Trop-2 Induces Tumor Growth Through AKT and Determines Sensitivity to AKT Inhibitors.

Clin Cancer Res

Unit of Cancer Pathology, CeSI-MeT, University 'G. d'Annunzio,' Chieti, Italy. Department of Neuroscience, Imaging and Clinical Sciences, Unit of Physiology and Physiopathology, University 'G. d'Annunzio,' Chieti, Italy.

Published: August 2016

Purpose: Inhibition of AKT is a key target area for personalized cancer medicine. However, predictive markers of response to AKT inhibitors are lacking. Correspondingly, the AKT-dependent chain of command for tumor growth, which will mediate AKT-dependent therapeutic responses, remains unclear.

Experimental Design: Proteomic profiling was utilized to identify nodal hubs of the Trop-2 cancer growth-driving network. Kinase-specific inhibitors were used to dissect Trop-2-dependent from Trop-2-independent pathways. In vitro assays, in vivo preclinical models, and case series of primary human breast cancers were utilized to define the mechanisms of Trop-2-driven growth and the mode of action of Trop-2-predicted AKT inhibitors.

Results: Trop-2 and AKT expression was shown to be tightly coordinated in human breast cancers, with virtual overlap with AKT activation profiles at T308 and S473, consistent with functional interaction in vivo AKT allosteric inhibitors were shown to only block the growth of Trop-2-expressing tumor cells, both in vitro and in preclinical models, being ineffective on Trop-2-null cells. Consistently, AKT-targeted siRNA only impacted on Trop-2-expressing cells. Lentiviral downregulation of endogenous Trop-2 abolished tumor response to AKT blockade, indicating Trop-2 as a mandatory activator of AKT.

Conclusions: Our findings indicate that the expression of Trop-2 is a stringent predictor of tumor response to AKT inhibitors. They also support the identification of target-activatory pathways, as efficient predictors of response in precision cancer therapy. Clin Cancer Res; 22(16); 4197-205. ©2016 AACR.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1078-0432.CCR-15-1701DOI Listing

Publication Analysis

Top Keywords

akt inhibitors
12
response akt
12
akt
10
tumor growth
8
preclinical models
8
human breast
8
breast cancers
8
tumor response
8
trop-2
6
tumor
5

Similar Publications

Background: Pathogenic or null mutations in WRN helicase is a cause of premature aging disease Werner syndrome (WS). WRN is known to protect somatic cells including adult stem cells from premature senescence. Loss of WRN in mesenchymal stem cells (MSCs) not only drives the cells to premature senescence but also significantly impairs the function of the stem cells in tissue repair or regeneration.

View Article and Find Full Text PDF

Background: Oral squamous cell carcinoma (OSCC) ranks as the sixth most common malignancy globally. Cisplatin is the standard chemotherapy for OSCC, but resistance often reduces its efficacy, necessitating new treatments with fewer side effects. Rumex dentatus L.

View Article and Find Full Text PDF

Acute B-lymphoblastic leukemia (B-ALL) is a highly heterogeneous hematologic malignancy, characterized by significant molecular differences among patients as the disease progresses. While the PI3K-Akt signaling pathway and metabolic reprogramming are known to play crucial roles in B-ALL, the interactions between lipid metabolism, immune pathways, and drug resistance remain unclear. In this study, we performed multi-omics analysis on different patient cohorts (newly diagnosed, relapsed, standard-risk, and poor-risk) to investigate the molecular characteristics associated with metabolism, signaling pathways, and immune regulation in B-ALL.

View Article and Find Full Text PDF

Novel Hsp90α inhibitor inhibits HSV-1 infection by suppressing the Akt/β-catenin pathway.

Int J Antimicrob Agents

January 2025

School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China. Electronic address:

The prevalence of herpes simplex virus type 1 (HSV-1) infection and the emergence of drug-resistant HSV-1 strains posts a significant global health challenge, necessitating the urgent development of effective anti-HSV-1 drugs. As one of the most prevalent molecular chaperones, heat shock protein 90 α (Hsp90α) has been extensively demonstrated to regulate a range of viral infections, thus representing a promising antiviral target. In this study, we identified JD-13 as a novel Hsp90α inhibitor and explored its capability in inhibiting HSV-1 infection.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a leading cause of cancer death that has limited treatment options for advanced stages. Although PD-1 inhibitors such as nivolumab and pembrolizumab have been approved for advanced HCC treatment, their effectiveness is often hampered by the immunosuppressive tumor microenvironment (TME), which is due to hypoxia-driven CXCL12/CXCR4 axis activation. In this study, we developed 807-NPs, lipid-coated tannic acid (TA) nanoparticles that encapsulate BPRCX807, a potent CXCR4 antagonist to target HCC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!