Fluorescence in situ hybridization (FISH) is a molecular technique widely used for the detection and characterization of microbial populations. FISH is affected by a wide variety of abiotic and biotic variables and the way they interact with each other. This is translated into a wide variability of FISH procedures found in the literature. The aim of this work is to systematically study the effects of pH, dextran sulfate and probe concentration in the FISH protocol, using a general peptide nucleic acid (PNA) probe for the Eubacteria domain. For this, response surface methodology was used to optimize these 3 PNA-FISH parameters for Gram-negative (Escherichia coli and Pseudomonas fluorescens) and Gram-positive species (Listeria innocua, Staphylococcus epidermidis and Bacillus cereus). The obtained results show that a probe concentration higher than 300nM is favorable for both groups. Interestingly, a clear distinction between the two groups regarding the optimal pH and dextran sulfate concentration was found: a high pH (approx. 10), combined with lower dextran sulfate concentration (approx. 2% [w/v]) for Gram-negative species and near-neutral pH (approx. 8), together with higher dextran sulfate concentrations (approx. 10% [w/v]) for Gram-positive species. This behavior seems to result from an interplay between pH and dextran sulfate and their ability to influence probe concentration and diffusion towards the rRNA target. This study shows that, for an optimum hybridization protocol, dextran sulfate and pH should be adjusted according to the target bacteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiotec.2016.03.047 | DOI Listing |
Int J Biol Macromol
January 2025
Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China. Electronic address:
Colon cancer is a leading cause of cancer-related morbidity and mortality worldwide, necessitating advancements in therapeutic strategies to improve outcomes. Current treatment modalities, including surgery, chemotherapy, and radiation, are limited by systemic toxicity, low drug utilization rates, and off-target effects. Colon-targeted drug delivery systems (CDDS) offer a promising alternative by leveraging the colon's unique physiology, such as near-neutral pH and extended transit time, to achieve localized and controlled drug release.
View Article and Find Full Text PDFLife Sci
January 2025
Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, China.
As a common side effect of radiotherapy, radiation-induced intestinal injury (RIII) greatly affects the prognosis of patients and the efficacy of radiotherapy. Current therapeutic strategies for RIII are still very limited. Thus, the identification of effective radioprotective agents is of great importance.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, China.
Ulcerative colitis (UC) is an inflammatory disease of the intestinal mucosa, and its incidence is steadily increasing worldwide. As a traditional Chinese medicinal insect, has been broadly utilized in clinical practice to treat wound healing. The tryptophan (Trp), tryptamine (Try), and 1,2,3,4-tetrahydrogen-β-carboline-3-carboxylic acid (Thcc) identified from concentrated ethanol-extract liquid (PACEL) exhibit significant cell proliferation-promoting and anti-inflammatory effects in the treatment of UC, but the mechanism involved remains obscure.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China. Electronic address:
Ethnopharmacological Relevance: Huanglian Ganjiang decoction (HGD), which is composed of Chinese medicines with cold, warm, and astringent properties, has demonstrated significant therapeutic efficacy in ulcerative colitis (UC). However, the underlying mechanisms remain unclear, highlighting the need for a multi-faceted investigation. Disassembling prescriptions is a crucial approach for investigating compatibility mechanisms.
View Article and Find Full Text PDFAllergol Immunopathol (Madr)
January 2025
Department of Neurofunction, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China;
Acanthoside B (Aca.B), a principal bioactive compound extracted from , exhibits superior anti-inflammatory capacity. Ulcerative colitis is a nonspecific inflammatory bowel disease with unknown etiology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!