Mesoporous silica nanocontainers (MSNs) with biologically responsive gatekeepers have great potential for effective delivery of cargo molecules to the desired sites. For that purpose, peptides could be effective candidates as gatekeepers because of their bioresponsiveness and targeting capability. Taking advantage of the zinc finger domain peptide (CXXC), we designed a biocompatible all-peptide gatekeeper (WCGKC) with on-off gatekeeping capability through stimulus-responsive conformational conversion and the steric bulkiness of the tryptophan unit. The turn structure induced by an intramolecular disulfide bond of the peptide gatekeeper (WCGKC-SS) completely inhibited the release of the entrapped doxorubicin (DOX). However, upon reduction of the disulfide bond by glutathione (GSH), the peptide conformation was converted to a random structure, which opened the orifice of the mesopore leading to the release of DOX. The amine moiety of the lysine of the peptide gatekeeper was PEGylated to enhance dispersion stability and biocompatibility of the nanocontainer. Furthermore, the MSNs with the peptide gatekeeper (PEG-WCGKC-SS-Si) selectively released the entrapped DOX in A549 human lung cancer cells in a controlled manner triggered by intracellular GSH, but not in CCD normal lung cells containing a low intracellular GSH level. In A549 cells, DOX-loaded PEG-WCGKC-SS-Si exhibited about 10-times higher cytotoxicity induced by apoptosis than that in CCD cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5nr09280a | DOI Listing |
J Agric Food Chem
December 2024
School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
Microb Cell Fact
November 2024
Department of Chemical Biology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wrocław, 50-383, Poland.
The expanding field of site-specific ligation of proteins and peptides has catalyzed the development of novel methods that enhance molecular modification. Among these methods, enzymatic strategies have emerged as dominant due to their specificity and efficiency in modifying proteins under mild conditions. Asparaginyl endopeptidase is a group of cyclotide-producing cysteine proteases from plants.
View Article and Find Full Text PDFSci Adv
November 2024
State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China.
Pathol Res Pract
January 2025
Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt. Electronic address:
Recently, our research group reported an upregulated expression profile of cystathionine γ-lyase (CSE) and cystathionine β-synthase (CBS), key enzymes involved in hydrogen sulfide (HS) production, in triple-negative breast cancer (TNBC) patients. However, the regulatory mechanisms underlying such altered expression patterns are not yet fully understood. In this study, we focused on the role of the STAT3/CSE/HS axis and the potential involvement of non-coding RNAs (ncRNAs), including long and short ncRNAs, in modulating this pivotal pathway.
View Article and Find Full Text PDFFront Immunol
October 2024
Department of Immunology, Faculty of Medicine, Technion, Haifa, Israel.
CXCR3 is a chemokine receptor with three ligands: CXCL9, CXCL10 and CXCL11. We report that in addition to attracting CXCR3+ T cells to tumor sites a key role of CXCL9 and CXCL10 is in inducing a self-feeding feedback loop that accelerates effector/cytotoxic activities of both CD4+ and CD8+ T cells while downregulating immunoregulatory protein TIM3. CXCR3KO mice displayed a markedly reduced response to anti-PD-1 and anti-CTLA-4 therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!