The dose reduction factors (DRF) for different types of lead glasses and C-arm units with x-ray tubes placed above the patient table were calculated from the results of measurements by loose thermoluminescent dosimeters (TLDs) and EYE-D dosimeters using a Rando phantom. The DRF values were analysed for different positions of routine dosimeters worn outside lead eyewear and confronted with DRFs calculated as the ratio of the dose equivalent to the eye measured with and without the eyewear. Moreover, for eye lens dosimeters designed to be worn behind lead glasses, multiplicative factors for various positions of dosimeter were derived in order to account for the differences between the doses measured on the inner side of the glasses and the dose equivalent to the eye lens. The DRFs calculated for the position of a routine dosimeter worn outside lead glasses on the band near the left eye lens are 5.6 and 5.7 for goggles and metallic glasses, respectively, while the DRFs calculated as the ratio of doses to the eyes measured with and without the eyewear are 10.2 and 9.9, respectively. Therefore, for dosimeters routinely used outside lead eyewear, the DRF calculated for the position of the dosimeter should be used. Otherwise, we can anticipate an almost two-fold underestimation of the doses. When the dosimeter is worn behind lead glasses, up to two-fold differences between the dose equivalent to the eye lens and the dose measured at the inner side of the glasses were observed depending on the dosimeter position.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0952-4746/36/2/N19DOI Listing

Publication Analysis

Top Keywords

lead glasses
20
worn lead
16
eye lens
16
drfs calculated
12
dose equivalent
12
equivalent eye
12
glasses
8
x-ray tubes
8
tubes patient
8
patient table
8

Similar Publications

First report of causing black foot on walnut in Chile.

Plant Dis

January 2025

Universidad de Chile, Departamento de Sanidad Vegetal, Facultad de Ciencias Agronomicas, Casilla 1004, Santiago, Chile, 8820000;

Walnut (Juglans regia L.) is the primary nut tree cultivated in Chile, covering 44.626 ha.

View Article and Find Full Text PDF

Lead halide perovskite heterojunctions have been considered as important building blocks for fabricating high-performance photodetectors (PDs). However, the interfacial defects induced non-radiative recombination and interfacial energy-level misalignment induced ineffective carrier transport severely limit the performance of photodetection of resulting devices. Herein, interfacial engineering with a spin-coating procedure has been studied to improve the photodetection performance of CHNHPbI/SnO heterojunction PDs, which were fabricated by sputtering a SnO thin film on ITO glass followed by spin-coating a CHNHPbI thin film.

View Article and Find Full Text PDF

Crystallization of CsPbBr Nanocrystals within a Melt-Quenched Glassy Coordination Polymer.

ACS Nano

January 2025

Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China.

Lead halide perovskite nanocrystal materials such as CsPbX (X = Cl, Br, and I) have triggered an intense research upsurge due to their excellent scintillation performance. Herein, an crystallization strategy is developed to grow CsPbBr nanocrystals (NCs) within a low-melting-point (280 °C) coordination polymer (CP) glass. The viscosity of coordination glass is reduced through a low-temperature (e.

View Article and Find Full Text PDF

The current study investigated the geometry, design and solid angle impacts on full energy peak efficiency (FEPE) of NaI(Tl) detectors for a line source. A line source is fabricated using 99mTc solution filled in a borosilicate glass tube of inner diameter 3 mm, tube wall thickness 2.5 mm and length 12.

View Article and Find Full Text PDF

Optogenetics has transformed the study of neural circuit function, but limitations in its application to species with large brains, such as non-human primates (NHPs), remain. A major challenge in NHP optogenetics is delivering light to sufficiently large volumes of deep neural tissue with high spatiotemporal precision, without simultaneously affecting superficial tissue. To overcome these limitations, we recently developed and tested in NHP cortex, the Utah Optrode Array (UOA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!