StrucBreak: A Computational Framework for Structural Break Detection in DNA Sequences.

Interdiscip Sci

Department of Computer Science and Engineering, Notre Dame University Bangladesh, Dhaka, Bangladesh.

Published: December 2017

Damages or breaks in DNA may change the characteristics of genomes and causes various diseases. In this work we construct a system that incorporates the maximum likelihood-based probabilistic formula to assess the number of damages that have occurred in any DNA sequence. This approach has been progressively benchmarked by implementing simulated data sets so that the outcomes can be compared with a ground truth or reference value. At first the sequence data set order is checked through the statistical cumulative sum (STACUMSUM). The verified sequences are then estimated by prior and posterior probability to count the percentages of breaks and mutations. Maximum-likelihood estimation then finds out the exact numbers and positions of breaks and detections. In database manipulation, one factor that decides the orientation and order of the sequence is geometric distance between consecutive sequences. The geometric distance is measured for smooth representation of the genome or DNA sequences. Finally, we compared the performance of our system with DAMBE5: (A Comprehensive Software Package for Data Analysis in Molecular Biology and Evaluation), and in response to time and space complexity, StrucBreak is much faster and consumes much less space due to our algorithmic approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12539-016-0158-7DOI Listing

Publication Analysis

Top Keywords

dna sequences
8
geometric distance
8
strucbreak computational
4
computational framework
4
framework structural
4
structural break
4
break detection
4
dna
4
detection dna
4
sequences
4

Similar Publications

Background: Bioinformatics analysis of hepatocellular carcinoma (HCC) expression profiles can aid in understanding its molecular mechanisms and identifying new targets for diagnosis and treatment.

Aim: In this study, we analyzed expression profile datasets and miRNA expression profiles related to HCC from the GEO using R software to detect differentially expressed genes (DEGs) and differentially expressed miRNAs (DEmiRs).

Methods And Results: Common DEGs were identified, and a PPI network was constructed using the STRING database and Cytoscape software to identify hub genes.

View Article and Find Full Text PDF

There is limited information on the occurrence of and ticks, as well as associated and species in Pakistan. Addressing this knowledge gap, the current study aimed at morphomolecular confirmation of these ticks and molecular assessment of associated Rickettsiales bacteria (, and spp.) in Balochistan, Pakistan.

View Article and Find Full Text PDF

LINE-1 (L1) retrotransposition is widespread in many cancers, especially those with a high burden of chromosomal rearrangements. However, whether and to what degree L1 activity directly impacts genome integrity is unclear. Here, we apply whole-genome sequencing to experimental models of L1 expression to comprehensively define the spectrum of genomic changes caused by L1.

View Article and Find Full Text PDF

Unlabelled: The reflexive translation of symbols in one chemical language to another defined genetics. Yet, the co-linearity of codons and amino acids is so commonplace an idea that few even ask how it arose. Readout is done by two distinct sets of proteins, called aminoacyl-tRNA synthetases (AARS).

View Article and Find Full Text PDF

Exoribonuclease-resistant RNAs (xrRNAs) are viral RNA structures that block degradation by cellular 5'-3' exoribonucleases to produce subgenomic viral RNAs during infection. Initially discovered in flaviviruses, xrRNAs have since been identified in wide range of RNA viruses, including those that infect plants. High sequence variability among viral xrRNAs raises questions about the shared molecular features that characterize this functional RNA class.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!