Hepatitis C virus (HCV) NS3 protease inhibitors (PIs) are important components of novel HCV therapy regimens. Studies of PI resistance initially focused on genotype 1. Therefore, knowledge about the determinants of PI resistance for the highly prevalent genotypes 2 to 6 remains limited. Using Huh7.5 cell culture-infectious HCV recombinants with genotype 1 to 6 NS3 protease, we identified protease positions 54, 155, and 156 as hot spots for the selection of resistance substitutions under treatment with the first licensed PIs, telaprevir and boceprevir. Treatment of a genotype 2 isolate with the newer PIs vaniprevir, faldaprevir, simeprevir, grazoprevir, paritaprevir, and deldeprevir identified positions 156 and 168 as hot spots for resistance; the Y56H substitution emerged for three newer PIs. Substitution selection also depended on the specific recombinant. The substitutions identified conferred cross-resistance to several PIs; however, most substitutions selected under telaprevir or boceprevir treatment conferred less resistance to certain newer PIs. In a single-cycle production assay, across genotypes, PI treatment primarily decreased viral replication, which was rescued by PI resistance substitutions. The substitutions identified resulted in differential effects on viral fitness, depending on the original recombinant and the substitution. Across genotypes, fitness impairment induced by resistance substitutions was due primarily to decreased replication. Most combinations of substitutions that were identified increased resistance or fitness. Combinations of resistance substitutions with fitness-compensating substitutions either rescued replication or compensated for decreased replication by increasing assembly. This comprehensive study provides insight into the selection patterns and effects of PI resistance substitutions for HCV genotypes 1 to 6 in the context of the infectious viral life cycle, which is of interest for clinical and virological HCV research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4879388 | PMC |
http://dx.doi.org/10.1128/AAC.02929-15 | DOI Listing |
Viruses
December 2024
Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany.
Recently, we demonstrated that the oncolytic Coxsackievirus B3 (CVB3) strain PD-H can be efficiently adapted to resistant colorectal cancer cells through dose-dependent passaging in colorectal cancer cells. However, the method is time-consuming, which limits its clinical applicability. Here, we investigated whether the manufacturing time of the adapted virus can be reduced by replacing the dose-based passaging with volume-based passaging.
View Article and Find Full Text PDFViruses
December 2024
Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
Photodynamic inactivation (PDI) has been revealed as a valuable approach against viral infections because of the fast therapeutic effect and low possibility of resistance development. The photodynamic inhibition of the infectivity of human herpes simplex virus type 1 (HSV-1) strain Victoria at different stages of its reproduction was studied. PDI activity was determined on extracellular virions, on the stage of their adsorption to the Madin-Darby bovine kidney (MDBK) cell line and inhibition of the viral replication stage by application of two tetra-methylpyridiloxy substituted gallium and zinc phthalocyanines (ZnPcMe and GaPcMe) upon 660 nm light exposure with a light-emitting diode (LED 660 nm).
View Article and Find Full Text PDFViruses
December 2024
Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China.
The ongoing global health crisis caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) necessitates the continuous development of innovative vaccine strategies, especially in light of emerging viral variants that could undermine the effectiveness of existing vaccines. In this study, we developed a recombinant virus-like particle (VLP) vaccine based on the Newcastle Disease Virus (NDV) platform, displaying a stabilized prefusion form of the SARS-CoV-2 spike (S) protein. This engineered S protein includes two proline substitutions (K986P, V987P) and a mutation at the cleavage site (RRAR to QQAQ), aimed at enhancing both its stability and immunogenicity.
View Article and Find Full Text PDFViruses
November 2024
Department of Virology 1, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.
Herpes simplex virus type 1 (HSV-1) acyclovir (ACV) resistance is acquired by mutations in the viral thymidine kinase (TK) or DNA polymerase (DNApol) genes. We previously obtained an ACV-resistant clone (HSV-1_VZV_TK_clone α) by sequential passages of HSV-1_VZV-TK, a recombinant virus which lacked its endogenous TK activity and instead expressed the varicella-zoster virus (VZV) TK ectopically. HSV-1_VZV_TK_clone α had been generated using an HSV-1_BAC in the presence of increasing concentrations of ACV.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Institute of Computer Technologies, Automation and Metrology, Lviv Polytechnic National University, 79000 Lviv, Ukraine.
This study contributes to improving the accuracy of temperature measurements with a platinum resistance temperature detector (RTD) by proposing techniques to mitigate the error due to self-heating by the operating current. An assessment of the measurement errors of the platinum RTD was carried out to study ways to improve their accuracy. High accuracy can be achieved by individual calibration using a voltage divider circuit to measure resistance, the substitution method, and the transitional measure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!