Pentameric ligand-gated ion channels have been identified as the principal target of general anesthetics (GA), whose molecular mechanism of action remains poorly understood. Bacterial homologs, such as the Gloeobacter violaceus receptor (GLIC), have been shown to be valid functional models of GA action. The GA bromoform inhibits GLIC at submillimolar concentration. We characterize bromoform binding by crystallography and molecular dynamics (MD) simulations. GLIC's open form structure identified three intra-subunit binding sites. We crystallized the locally closed form with an additional bromoform molecule in the channel pore. We systematically compare binding with the multiple potential sites of allosteric channel regulation in the open, locally closed, and resting forms. MD simulations reveal differential exchange pathways between sites from one form to the other. GAs predominantly access the receptor from the lipid bilayer in all cases. Differential binding affinity among the channel forms is observed; the pore site markedly stabilizes the inactive versus active state.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.str.2016.02.014 | DOI Listing |
Sheng Li Xue Bao
December 2024
Department of Clinical Psychology, Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250117, China.
Glycine receptors (GlyRs) belong to the ligand-gated ion channel receptor superfamily and are widely distributed throughout the central nervous system. GlyRs are essential for maintaining visual, auditory, sensory and motor functions, and abnormalities in its structure and function can lead to various neurological disorders. This review aims to provide an extensive analysis of the structure, function and regulatory mechanisms of GlyRs, and evaluate its role in various central nervous system diseases.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Medicinal Chemical Biology and Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, 300350, China.
The zinc-activated channel (ZAC) is an atypical mammalian cys-loop receptor (CLR) that is activated by zinc ions and protons, allowing cations to pass through. The molecular mechanism that ligands use to activate ZAC remains elusive. Here, we present three cryo-electron microscopy reconstructions of human ZAC (hZAC) under different conditions.
View Article and Find Full Text PDFSci Adv
January 2025
SciLifeLab, Department of Applied Physics, KTH Royal Institute of Technology, Tomtebodävagen 23, Solna, 17165 Stockholm, Sweden.
γ-Aminobutyric acid type A (GABA) receptors are ligand-gated ion channels in the central nervous system with largely inhibitory function. Despite being a target for drugs including general anesthetics and benzodiazepines, experimental structures have yet to capture an open state of classical synaptic α1β2γ2 GABA receptors. Here, we use a goal-oriented adaptive sampling strategy in molecular dynamics simulations followed by Markov state modeling to capture an energetically stable putative open state of the receptor.
View Article and Find Full Text PDFBioorg Med Chem
December 2024
Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States. Electronic address:
The purinergic P2X ligand-gated ion channel 7 receptor (P2X7R) plays a critical role in various inflammatory processes and other diseases. Fast determination of compounds P2X7R binding potency and discovery of a promise PET radiotracer for imaging P2X7R require a P2X7R suitable radioligand for radioactive competitive binding assay. Herein, we designed and synthesized thirteen new P2X7R ligands and determined the in vitro binding potency.
View Article and Find Full Text PDFArch Pharm (Weinheim)
January 2025
European Institute for Molecular Imaging (EIMI), University of Muenster, Muenster, Germany.
The P2X4 receptor (P2X4R), a ligand-gated ion channel activated by ATP, plays a critical role in neuroinflammation, chronic pain, and cancer progression, making it a promising therapeutic target. In this study, we explored the design and synthesis of piperazine-based P2X4R antagonists, building on the structural framework of paroxetine. A series of over 35 compounds were synthesized to investigate structure-activity relationships (SARs) in a Ca²⁺-flux assay for P2X4R antagonistic activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!