Laser power dependence of mechanoluminescence in metals.

Luminescence

Department of Applied Physics, Raipur Institute of Technology, Raipur, Chhattisgarh, 492101, India.

Published: December 2016

Mechanoluminescence (ML) glow is produced on the back side when the front of a metal sample is irradiated with infrared Nd:YAG laser pulses. An incident laser beam with a power density below the plasma-flare onset threshold causes a rise in temperature in the studied metal. As the incident laser power density increases, the intensity of the ML glow signal also increases. On the basis of the laser power density-induced temperature, an expression is derived for the temperature-induced thermal stress. An expression is derived for the correlation between thermal stress and laser power density, which indicates that the temperature-induced thermal stress is directly related to the incident laser power density. In the region of plastic deformation, temperature-induced thermal stress is related to the strain and, consequently, to the emitted ML intensity. Finally, an expression is derived for the laser power dependence of the ML intensity, and good agreement is found between the theoretical and experimental results. Copyright © 2016 John Wiley & Sons, Ltd.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bio.3122DOI Listing

Publication Analysis

Top Keywords

laser power
24
power density
16
thermal stress
16
incident laser
12
expression derived
12
temperature-induced thermal
12
laser
8
power dependence
8
power
6
dependence mechanoluminescence
4

Similar Publications

Femtosecond lasers represent a novel tool for tattoo removal as sources that can be operated at high power, potentially leading to different removal pathways and products. Consequently, the potential toxicity of its application also needs to be evaluated. In this framework, we present a comparative study of Ti:Sapphire femtosecond laser irradiation, as a function of laser power and exposure time, on water dispersions of Pigment Green 7 (PG7) and the green tattoo ink Green Concentrate (GC), which contains PG7 as its coloring agent.

View Article and Find Full Text PDF

Various large language models (LLMs) can provide human-level medical discussions, but they have not been compared regarding rhinoplasty knowledge. To compare the leading LLMs in answering complex rhinoplasty consultation questions as evaluated by plastic surgeons. Ten open-ended rhinoplasty consultation questions were presented to ChatGPT-4o, Google Gemini, Claude, and Meta-AI LLMs.

View Article and Find Full Text PDF

Moisture-Electric Generators Working in Subzero Environments Based on Laser-Engraved Hygroscopic Hydrogel Arrays.

ACS Nano

January 2025

State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, People's Republic of China.

Moisture-electric generators (MEGs) generate power by adsorbing water from the air. However, their performance at low temperatures is hindered due to icing. In the present work, MEG arrays are developed by laser engraving techniques and a modulated low-temperature hydrogel as the absorbent material.

View Article and Find Full Text PDF

The study of degradation behavior of electrocatalysts in an industrial context calls for rapid and efficient analysis methods. Optical methods like Raman spectroscopy fulfil these requirements and are thus predestined for this purpose. However, the iridium utilized in proton exchange membrane electrolysis (PEMEL) is Raman inactive in its metallic state.

View Article and Find Full Text PDF

Ultrasound can improve the quality of finished products by reducing porosity and enhancing microstructure in selective laser melting, directed energy deposition, and laser beam welding. This study evaluates the efficiency of ultrasound produced by a pulsed laser via the optoacoustic effect. A quantitative model of collapse of vapor-gas bubbles has been developed under the conditions of ultrasonic treatment at near resonance frequencies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!