Production of heterologous proteins in Pichia pastoris (syn. Komagataella sp.) has been shown to exert a metabolic burden on the host metabolism. This burden is associated with metabolite drain, which redirects nucleotides and amino acids from primary metabolism. On the other hand, recombinant protein production affects energy and redox homeostasis of the host cell. In a previous study, we have demonstrated that overexpression of single genes of the oxidative pentose phosphate pathway (PPP) had a positive influence on recombinant production of cytosolic human superoxide dismutase (hSOD). In this study, different combinations of these genes belonging to the oxidative PPP were generated and analyzed. Thereby, a 3.8-fold increase of hSOD production was detected when glucose-6-phosphate dehydrogenase (ZWF1) and 6-gluconolactonase (SOL3) were simultaneously overexpressed, while the combinations of other genes from PPP had no positive effect on protein production. By measuring isotopologue patterns of (13)C-labelled metabolites, we could detect an upshift in the flux ratio of PPP to glycolysis upon ZWF1 and SOL3 co-overexpression, as well as increased levels of 6-phosphogluconate. The substantial improvement of hSOD production by ZWF1 and SOL3 co-overexpression appeared to be connected to an increase in PPP flux. In conclusion, we show that overexpression of SOL3 together with ZWF1 enhanced both the PPP flux ratio and hSOD accumulation, providing evidence that in P. pastoris Sol3 limits the flux through PPP and recombinant protein production.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4909809 | PMC |
http://dx.doi.org/10.1007/s00253-016-7363-5 | DOI Listing |
J Med Chem
January 2025
Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda 151 401, India.
The multifactorial nature of cancer requires treatment that involves simultaneous targeting of associated overexpressed proteins and cell signaling pathways, possibly leading to synergistic effects. Herein, we present a systematic study that involves the simultaneous inhibition of human topoisomerases (hTopos) and histone deacetylases (HDACs) by multitargeted quinoline-bridged hydroxamic acid derivatives. These compounds were rationally designed considering pharmacophoric features and catalytic sites of the cross-talk proteins, synthesized, and assessed for their anticancer potential.
View Article and Find Full Text PDFACS Synth Biol
January 2025
State Key Laboratory of Fine Chemicals, Frontiers Science Centre for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian 116024, China.
Cannabichromene (CBC), a valuable but extremely low-abundance component of cannabinoids in L., is known for its ability to promote neurogenesis. The scarcity of CBC in natural is primarily attributed to the inefficiency of the 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol 4 phosphate (DOXP/MEP) and fatty acid metabolism pathways, along with the limited competitive advantage of cannabichromenic acid synthetase (CBCAS) compared to other cannabinoid synthases.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6.
Although chromatin remodelers are among the most important risk genes associated with neurodevelopmental disorders (NDDs), the roles of these complexes during brain development are in many cases unclear. Here, we focused on the recently discovered ChAHP chromatin remodeling complex. The zinc finger and homeodomain transcription factor ADNP is a core subunit of this complex, and de novo mutations lead to intellectual disability and autism spectrum disorder.
View Article and Find Full Text PDFPLoS One
January 2025
Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand.
Anti-programmed cell death 1 (PD-1) monoclonal antibodies (mAbs) have proven to be effective in treating various cancers, including colorectal, lung, and melanoma. Despite their clinical success, some patients develop resistance to mAbs, requiring co-treatments with radio- or chemotherapy. Interleukin-15 (IL-15) is an immunostimulatory cytokine that promotes immune cell production and proliferation.
View Article and Find Full Text PDFPLoS One
January 2025
South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, South Africa.
Hyphopichia pseudoburtonii, is emerging as a potential biocontrol agent against various phytopathogens. These traits have been attributed to the production of various antifungal compounds in the presence of target pathogens. However, the broad molecular mechanisms involved in the antifungal activity are not yet understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!