Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this report, we propose a direct patterning method of graphene on the SiC(0001) surface by KrF-excimer-laser irradiation. In this method, Si atoms are locally sublimated from the SiC surface in the laser-irradiated area, and direct graphene growth is induced by the rearrangement of surplus carbon on the SiC surface. Using Raman microscopy, we demonstrated the formation of graphene by laser irradiation and observed the growth process by transmission electron microscopy and conductive atomic force microscopy. When SiC was irradiated by 5000 shots of the laser beam with a fluence of 1.2 J/cm, two layers of graphene were synthesized on the SiC(0001) surface. The number of graphene layers increased from 2 to 5-7 with an increase in the number of laser shots. Based on the results of conductive-atomic force microscopy measurements, we conclude that graphene formation was initiated from the step area, after which the graphene grew towards the terrace area by further Si evaporation and C recombination with increasing laser irradiation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4788600 | PMC |
http://dx.doi.org/10.1063/1.4943142 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!