AI Article Synopsis

  • The study investigates the role of the microRNA miR-20a-5p in hepatic insulin resistance, particularly its impact on the AKT/GSK signaling pathway and glycogen synthesis in liver cells.
  • miR-20a-5p levels were found to be decreased in db/db mice and liver cells exposed to high glucose, leading to diminished glycogen production and impaired insulin signaling.
  • The research identifies p63 as a target of miR-20a-5p, suggesting that p63 influences glycogen synthesis by interacting with p53 and regulating PTEN expression.

Article Abstract

Recently, it is implicated that aberrant expression of microRNAs (miRs) is associated with insulin resistance. However, the role of miR-17 family in hepatic insulin resistance and its underlying mechanisms remain unknown. In this study, we provided mechanistic insight into the effects of miR-20a-5p, a member of miR-17 family, on the regulation of AKT/GSK pathway and glycogenesis in hepatocytes. MiR-20a-5p was down-regulated in the liver of db/db mice, and NCTC1469 cells and Hep1-6 cells treated with high glucose, accompanied by reduced glycogen content and impaired insulin signalling. Notably, inhibition of miR-20a-5p significantly reduced glycogen synthesis and AKT/GSK activation, whereas overexpression of miR-20a-5p led to elevated glycogenesis and activated AKT/GSK signalling pathway. In addition, miR-20a-5p mimic could reverse high glucose-induced impaired glycogenesis and AKT/GSK activation in NCTC1469 and Hep1-6 cells. P63 was identified as a target of miR-20a-5p by bioinformatics analysis and luciferase reporter assay. Knockdown of p63 in the NCTC1469 cells and the Hep1-6 cells by transfecting with siRNA targeting p63 could increase glycogen content and reverse miR-20a-5p inhibition-induced reduced glycogenesis and activation of AKT and GSK, suggesting that p63 participated in miR-20a-5p-mediated glycogenesis in hepatocytes. Moreover, our results indicate that p63 might directly bind to p53, thereby regulating PTEN expression and in turn participating in glycogenesis. In conclusion, we found novel evidence suggesting that as a member of miR-17 family, miR-20a-5p contributes to hepatic glycogen synthesis through targeting p63 to regulate p53 and PTEN expression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4956936PMC
http://dx.doi.org/10.1111/jcmm.12835DOI Listing

Publication Analysis

Top Keywords

glycogen synthesis
12
targeting p63
12
pten expression
12
mir-17 family
12
hep1-6 cells
12
contributes hepatic
8
hepatic glycogen
8
synthesis targeting
8
p63 regulate
8
regulate p53
8

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

GloNeuro Academy, Noida, Uttar Pradesh, India.

Background: Obesity is caused by the buildup of excess body fat, which upsets homeostasis. Genetic, epigenetic, and behavioural variables all have a role in the pathophysiology of obesity. In turn, obesity throws off the sleep cycle, leading to sleep problems.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Anesthesia, Critical Care & Pain Medicine, Boston, MA, USA.

Background: Spouses of Alzheimer's disease (AD) patients are at a higher risk of developing incidental dementia. However, the causes and underlying mechanism of this clinical observation remain largely unknown. One possible explanation is linked to microbiota dysbiosis, a condition that has been associated with AD.

View Article and Find Full Text PDF

Background: Neurofibrillary tangles (NFTs), one of the hallmarks of Alzheimer's disease (AD), are composed of highly phosphorylated forms of the microtubule-associated protein tau. Phosphorylation results from the activity of several threonine/serine kinases, and increased expression of glycogen synthase kinase-3β (GSK-3β). These are involved in the formation of paired helical filament (PHF)-tau, which induces the formation of NFTs.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) ranks fourth in cancer-related mortality worldwide. This study aims to uncover the genes and pathways involved in HCC through network pharmacology (NP) and to discover potential drugs via machine learning (ML)-based ligand screening. Additionally, toxicity prediction, molecular docking, and molecular dynamics (MD) simulations were conducted.

View Article and Find Full Text PDF

Objective To investigate the role and possible mechanism of glycogen synthase kinase-3 beta (GSK-3β)/cAMP response element binding protein (CREB) signaling pathway in regulating macrophage pyroptosis in the pathogenesis and development of diabetic foot ulcer (DFU). Methods Thirty rats were randomly divided into control group, DFU group and GSK-3β inhibited group, with 10 rats in each group. Fasting blood glucose (FBG) was detected by dynamic blood glucose detector.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!