Three assays were performed. In assay 1, oocytes harvested during the winter months were subjected to kinetic heat shock by stressing the oocytes at 39.5°C (HS1) or at 40.5°C (HS2) for either 6, 12, 18 or 24 h and then matured at control temperature (38.5°C). The nuclear maturation rates (NMR) of all oocytes were recorded after 24 h. In assay 2, oocytes collected year-round maturated, were implanted via in vitro fertilization (IVF) and developed for 9 days. Gene expression analysis was performed on target genes (Cx43, CDH1, DNMT1, HSPA14) with reference to the two housekeeping genes (GAPDH and SDHA) in embryos. Similarly, in assay 3, genetic analysis was performed on the embryos produced from heat-stressed oocytes (from HS1 and HS2). In assay 1, the duration of heat stress resulted in a significant decline in NMR (P < 0.05) with HS1 for maturated oocytes at 86.4 ± 4.3; 65.5 ± 0.7; 51.3 ± 0.9; 38.1 ± 1.9 and 36.3 ± 0.9, for control, 6 h, 12 h, 18 h and 24 h, respectively. For assays 2 and 3, results demonstrated that DNMT1, Cx43 and HSPA14 were down-regulated in the embryos produced in the warm with respect to the cold months (P < 0.05). A constant up- and down-regulation of DNMT1 and HSPA14 genes were observed in both HS-treated samples. Also, an inconsistent pattern of gene expression was observed in Cx43 and CDH1 genes (P < 0.05). Targeted gene expression was aberrant in embryo development, which can provide evidence on early embryo arrest and slowed embryo development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/S0967199416000071 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!