This study evaluated the setup uncertainties for brain sites when using BrainLAB's ExacTrac X-ray 6D system for daily pretreatment to determine the optimal planning target volume (PTV) margin. Between August 2012 and April 2015, 28 patients with brain tumors were treated by daily image-guided radiotherapy using the BrainLAB ExacTrac 6D image guidance system of the Novalis-Tx linear accelerator. DUONTM (Orfit Industries, Wijnegem, Belgium) masks were used to fix the head. The radiotherapy was fractionated into 27-33 treatments. In total, 844 image verifications were performed for 28 patients and used for the analysis. The setup corrections along with the systematic and random errors were analyzed for six degrees of freedom in the translational (lateral, longitudinal, and vertical) and rotational (pitch, roll, and yaw) dimensions. Optimal PTV margins were calculated based on van Herk et al.'s [margin recipe = 2.5∑ + 0.7σ - 3 mm] and Stroom et al.'s [margin recipe = 2∑ + 0.7σ] formulas. The systematic errors (∑) were 0.72, 1.57, and 0.97 mm in the lateral, longitudinal, and vertical translational dimensions, respectively, and 0.72°, 0.87°, and 0.83° in the pitch, roll, and yaw rotational dimensions, respectively. The random errors (σ) were 0.31, 0.46, and 0.54 mm in the lateral, longitudinal, and vertical rotational dimensions, respectively, and 0.28°, 0.24°, and 0.31° in the pitch, roll, and yaw rotational dimensions, respectively. According to van Herk et al.'s and Stroom et al.'s recipes, the recommended lateral PTV margins were 0.97 and 1.66 mm, respectively; the longitudinal margins were 1.26 and 3.47 mm, respectively; and the vertical margins were 0.21 and 2.31 mm, respectively. Therefore, daily setup verifications using the BrainLAB ExacTrac 6D image guide system are very useful for evaluating the setup uncertainties and determining the setup margin.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4809593 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0151709 | PLOS |
Strahlenther Onkol
December 2024
Klinik für Strahlentherapie und Radioonkologie, Klinikum Stuttgart, Stuttgart, Germany.
Objective: The precise daily positioning of patients during radiation therapy determines the quality of the entire treatment. To avoid additional radiation exposure from regular cone-beam CT (CBCT) scans, surface-guided radiotherapy systems (SGRT) are increasingly used. The aim of this prospective clinical study was to evaluate the advantages, feasibility, and pitfalls of SGRT using the surface tracking recorder prototype of the camera component of ExacTrac Dynamic (Brainlab AG, Munich, Germany).
View Article and Find Full Text PDFJ Appl Clin Med Phys
December 2024
Department of Radiation Oncology, Willis Knighton Cancer Center, Shreveport, Louisiana, USA.
Linear accelerator (LINAC)-based stereotactic radiosurgery (SRS) has become a mainstay in the management of intracranial tumors. However, the high fractional doses and sharp gradients used in SRS place heavy demands on geometric accuracy. Image guidance systems such as ExacTrac (ETX, Brainlab AG, Munich, Germany) have been developed to facilitate position verification at nonzero table angles.
View Article and Find Full Text PDFClin Transl Radiat Oncol
May 2024
Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.
Adv Radiat Oncol
March 2024
Department of Clinical Oncology, Prince of Wales Hospital, Hong Kong SAR, China.
Technol Cancer Res Treat
November 2023
Centre Henri Becquerel, Rouen, France.
The objective was to investigate the possibility of using ExacTrac X-ray (ETX) for 6D image guidance in stereotactic body radiation therapy (SBRT) of bone metastasis and to propose a patient management protocol. The analyses were first obtained from measurements on a pelvic phantom and on 19 patients treated for bone metastasis. The phantom study consisted of applying known offsets and evaluating the ETX level of accuracy, where results were compared with kV-cone beam computed tomography (kV-CBCT).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!