Differentiation Among Blumeria graminis f. sp. tritici Isolates Originating from Wild Versus Domesticated Triticum Species in Israel.

Phytopathology

First author: Department of Vegetables and Field Crops, Institute of Plant Sciences, ARO-Volcani Center, Bet Dagan 5025000, Israel; second and seventh authors: United States Department of Agriculture-Agricultural Research Service, Department of Plant Pathology, North Carolina State University, Raleigh 27695; third author: The Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel; fourth author: Institute for Cereal Crops Improvement (ICCI), The George S. Wise Faculty for Life Sciences Tel Aviv University, Tel Aviv 69978, Israel; and fifth and sixth authors: Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland.

Published: August 2016

AI Article Synopsis

  • Israel is a key region for both domesticated wheat species and their wild relatives, particularly wild emmer wheat.
  • A study examined 61 isolates of the powdery mildew pathogen Blumeria graminis f. sp. tritici, revealing two distinct groups based on their host origins: domesticated wheat and wild emmer.
  • One-way gene flow was observed from domesticated wheat to wild emmer populations, supporting the idea of genetic overlap between the two groups despite their significant differentiation.

Article Abstract

Israel and its vicinity constitute a center of diversity of domesticated wheat species (Triticum aestivum and T. durum) and their sympatrically growing wild relatives, including wild emmer wheat (T. dicoccoides). We investigated differentiation within the forma specialis of their obligate powdery mildew pathogen, Blumeria graminis f. sp. tritici. A total of 61 B. graminis f. sp. tritici isolates were collected from the three host species in four geographic regions of Israel. Genetic relatedness of the isolates was characterized using both virulence patterns on 38 wheat lines (including 21 resistance gene differentials) and presumptively neutral molecular markers (simple-sequence repeats and single-nucleotide polymorphisms). All isolates were virulent on at least some genotypes of all three wheat species tested. All assays divided the B. graminis f. sp. tritici collection into two distinct groups, those from domesticated hosts and those from wild emmer wheat. One-way migration was detected from the domestic wheat B. graminis f. sp. tritici population to the wild emmer B. graminis f. sp. tritici population at a rate of five to six migrants per generation. This gene flow may help explain the overlap between the distinct domestic and wild B. graminis f. sp. tritici groups. Overall, B. graminis f. sp. tritici is significantly differentiated into wild-emmer and domesticated-wheat populations, although the results do not support the existence of a separate f. sp. dicocci.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PHYTO-07-15-0177-RDOI Listing

Publication Analysis

Top Keywords

graminis tritici
32
wild emmer
12
graminis
8
blumeria graminis
8
tritici
8
tritici isolates
8
wheat species
8
emmer wheat
8
tritici population
8
wild
6

Similar Publications

Since the domestication of plants, pathogenic fungi have consistently threatened crop production, evolving genetically to develop increased virulence under various selection pressures. Understanding their evolutionary trends is crucial for predicting and designing control measures against future disease outbreaks. This paper reviews the evolution of fungal pathogens from natural habitats to agricultural settings, focusing on eight significant phytopathogens: , , spp.

View Article and Find Full Text PDF

A Unique Expression Profile Responding to Powdery Mildew in Wild Emmer Wheat D430.

Int J Mol Sci

December 2024

Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China.

Powdery mildew, caused by f. sp. (), is a disease that seriously harms wheat production and occurs in all wheat-producing areas around the world.

View Article and Find Full Text PDF

Wheat production is threatened by multiple fungal pathogens, such as the wheat powdery mildew fungus (Blumeria graminis f. sp. tritici, Bgt).

View Article and Find Full Text PDF

Wheat ( spp.) is one of the most important cereal crops in the world. Several diseases affect wheat production and can cause 20-80% yield loss annually.

View Article and Find Full Text PDF

The global wheat production faces significant challenges due to major rust-causing fungi, namely f. sp. , , and f.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!