Consistent individual differences in animal performance drive individual fitness under variable environmental conditions and provide the framework through which natural selection can operate. Underlying this concept is the assumption that individuals will display consistent levels of performance in fitness-related traits and interest has focused on individual variation and broad sense repeatability in a range of behavioural and physiological traits. Despite playing a central role in maintenance and growth, and with considerable inter-individual variation documented, broad sense repeatability in rates of protein synthesis has not been assessed. In this study we show for the first time that juvenile flounder Platichthys flesus reared under controlled environmental conditions on the same plane of nutrition for 46 days maintain consistent whole-animal absolute rates of protein synthesis (As). By feeding meals containing 15N-labelled protein and using a stochastic end-point model, two non-terminal measures of protein synthesis were made 32 days apart (d14 and d46). As values (mass-corrected to a standard mass of 12 g) showed 2- to 3-fold variation between individuals on d14 and d46 but individuals showed similar As values on both days with a broad sense repeatability estimate of 0.684 indicating significant consistency in physiological performance under controlled experimental conditions. The use of non-terminal methodologies in studies of animal ecophysiology to make repeat measures of physiological performance enables known individuals to be tracked across changing conditions. Adopting this approach, repeat measures of protein synthesis under controlled conditions will allow individual ontogenetic changes in protein metabolism to be assessed to better understand the ageing process and to determine individual physiological adaptive capacity, and associated energetic costs of adaptation, to global environmental change.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4809500 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0152239 | PLOS |
Curr Nutr Rep
January 2025
Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA.
Purpose Of Review: This review aims to determine whether muscle mass and function can be effectively maintained without relying on animal-based protein sources. We evaluate the quality, digestibility, and essential amino acid profiles of plant-based proteins to understand their potential in preventing and managing sarcopenia.
Recent Finding: Recent studies indicate that while animal-based proteins have traditionally been considered the gold standard for supporting muscle protein synthesis, certain plant-based protein blends, fortified with leucine or other essential amino acids, can produce comparable anabolic responses.
Med Oncol
January 2025
Universidad Espíritu Santo, Samborondón, 092301, Ecuador.
Didemnins, a class of cyclic depsipeptides derived from marine organisms exhibit notable anticancer properties. Among them, Didemnin B has been extensively researched for its strong antitumor activity and progression to clinical trials. Nonetheless, its clinical application has been impeded by challenges like poor bioavailability and dose-limiting toxicity.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic.
Protein synthesis (translation) consumes a substantial proportion of cellular resources, prompting specialized mechanisms to reduce translation under adverse conditions. Ribosome inactivation often involves ribosome-interacting proteins. In both bacteria and eukaryotes, various ribosome-interacting proteins facilitate ribosome dimerization or hibernation, and/or prevent ribosomal subunits from associating, enabling the organisms to adapt to stress.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China.
Biomimetic calcification is a micro-crystallization process that mimics the natural biomineralization process, where biomacromolecules regulate the formation of inorganic minerals. In this study, it is presented that a protein-assisted biomimetic calcification method for the in situ synthesis of nitrogen-doped metal-organic framework (MOF) materials. A series of unique core-shell structures are created by utilizing proteins as templates and guiding agents in the nucleation step, creating ideal conditions for shell growth.
View Article and Find Full Text PDFJ Clin Med
December 2024
Department of Surgical Nursing, Medical University of Białystok, 15-274 Białystok, Poland.
Wound healing is a complex physiological process that begins immediately upon injury. Nutritional status significantly affects the course of regenerative processes. Malnutrition can prolong the inflammatory phase, limit collagen synthesis, and increase the risk of new wound formation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!