The mechanisms behind how muscle contractions in one hand influence corticomuscular coherence in the opposite hand are still undetermined. Twenty-two subjects were recruited to finish bimanual and unimanual motor tasks. In the unimanual tasks, subjects performed precision grip using their right hand with visual feedback of exerted forces. The bimanual tasks involved simultaneous finger abduction of their left hand with visual feedback and precision grip of their right hand. They were divided into four conditions according to the two contraction levels of the left-hand muscles and whether visual feedback existed for the right hand. Measures of coherence and power spectrum were calculated from EEG and EMG data and statistically analyzed to identify changes in corticomuscular coupling and oscillatory activity. Results showed that compared with the unimanual task, a significant increase in the mean corticomuscular coherence of the right hand was found when left-hand muscles contracted at 5% of the maximal isometric voluntary contraction (MVC). No significant changes were found when the contraction level was 50% of the MVC. Furthermore, both the increase of muscle contraction levels and the elimination of visual feedback for right hand can significantly decrease the corticomuscular coupling in right hand during bimanual tasks. In summary, the involvement of moderate left-hand muscle contractions resulted in an increase tendency of corticomuscular coherence in right hand while strong left-hand muscle contractions eliminated it. We speculated that the perturbation of activities in one corticospinal tract resulted from the movement of the opposite hand can enhance the corticomuscular coupling when attention distraction is limited.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuropsychologia.2016.03.028 | DOI Listing |
Neuroimage
January 2025
School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China. Electronic address:
The monosynaptic cortico-motoneuronal connections suggest the possibility of individual motor units (MUs) receiving independent commands from motor cortex. However, previous studies that used corticomuscular coherence (CMC) between electroencephalogram (EEG) signals and electromyogram (EMG) signals have not directly explored the corticospinal functionality at the single motoneuron level. The objective of this study is to find out whether synchronous activities exist between the motor cortex and individual MUs.
View Article and Find Full Text PDFStereotact Funct Neurosurg
November 2024
Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada.
Cogn Neurodyn
June 2024
Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, 29 Jiangjun Avenue, Jiangning District, Nanjing, 211100 Jiangsu China.
Studies show that movement observation (MO), movement imagery (MI), or movement execution (ME) based brain-computer interface systems are promising in promoting the rehabilitation and reorganization of damaged motor function. This study was aimed to explore and compare the motor function rehabilitation mechanism among MO, MI, and ME. 64-channel electroencephalogram and 4-channel electromyogram data were collected from 39 healthy participants (25 males, 14 females; 18-23 years old) during MO, ME, and MI.
View Article and Find Full Text PDFJ Neurophysiol
December 2024
School of Health and Exercise Sciences and Centre for Heart, Lung and Vascular Health, The University of British Columbia, Kelowna, British Columbia, Canada.
The increasing descending drive needed to sustain submaximal isometric torque makes it difficult to isolate fatigue-related changes to neural excitability because evoked electromyography (EMG) responses are influenced by the relative activation of the motoneuron pool. Hence, it is becoming increasingly common to investigate fatigue using a sustained contraction with maintained output from the motoneuron pool; i.e.
View Article and Find Full Text PDFBiomed Signal Process Control
November 2024
University of Illinois Urbana-Champaign, Department of Bioengineering, Grainger College of Engineering, Urbana, Illinois, United States.
Following a stroke, compensation for the loss of ipsilesional corticospinal and corticobulbar projections, results in increased reliance on contralesional motor pathways during paretic arm movement. Better understanding outcomes of post-stroke contralesional cortical adaptation outcomes may benefit more targeted post-stroke motor rehabilitation interventions. This proof-of-concept study involves eight healthy controls and ten post-stroke participants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!