Cyclohexadiene Revisited: A Time-Resolved Photoelectron Spectroscopy and ab Initio Study.

J Phys Chem A

Department of Chemical Physics, AlbaNova University Centre, Stockholm University, Roslagstullsbacken 21, 106 91 Stockholm, Sweden.

Published: April 2016

We have reinvestigated the excited state dynamics of cyclohexa-1,3-diene (CHD) with time-resolved photoelectron spectroscopy and fewest switches surface hopping molecular dynamics based on linear response time-dependent density functional theory after excitation to the lowest lying ππ* (1B) state. The combination of both theory and experiment revealed several new results: First, the dynamics progress on one single excited state surface. After an incubation time of 35 ± 10 fs on the excited state, the dynamics proceed to the ground state in an additional 60 ± 10 fs, either via a conrotatory ring-opening to hexatriene or back to the CHD ground state. Moreover, ring-opening predominantly occurs when the wavepacket crosses the region of strong nonadiabatic coupling with a positive velocity in the bond alternation coordinate. After 100 fs, trajectories remaining in the excited state must return to the CHD ground state. This extra time delay induces a revival of the photoelectron signal and is an experimental confirmation of the previously formulated model of two parallel reaction channels with distinct time constants. Finally, our simulations suggest that after the initially formed cis-Z-cis HT rotamer the trans-Z-trans isomer is formed, before the thermodynamical equilibrium of three possible rotamers is reached after 1 ps.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.5b10928DOI Listing

Publication Analysis

Top Keywords

excited state
16
ground state
12
time-resolved photoelectron
8
photoelectron spectroscopy
8
state
8
state dynamics
8
chd ground
8
cyclohexadiene revisited
4
revisited time-resolved
4
spectroscopy initio
4

Similar Publications

A thermochromic pigment, derived from reaction of ethylenediamine and rhodamine B known as MA-RB, has been successfully developed. This pigment showcases temperature-controlled visible color-transformation properties in both solid and solution states. The thermochromic pigment MA-RB exhibits a notable color change from light pink to rose red, triggered by thermal excitation.

View Article and Find Full Text PDF

Stacking Engineering toward Giant Second Harmonic Generation in Twisted Graphene Superstructures.

J Am Chem Soc

December 2024

Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

The nonlinear optical response in graphene is finding increasing applications in nanophotonic devices. The activation and enhancement of second harmonic generation (SHG) in graphene, which is generally forbidden in monolayer and AB-stacked bilayer graphene due to their centrosymmetry, is of urgent need for nanophotonic applications. Here, we present a comprehensive study of SHG performance of twisted multilayer graphene structures based on stacking engineering.

View Article and Find Full Text PDF

Machine learning plays an important role in quantum chemistry, providing fast-to-evaluate predictive models for various properties of molecules; however, most existing machine learning models for molecular electronic properties use density functional theory (DFT) databases as ground truth in training, and their prediction accuracy cannot surpass that of DFT. In this work we developed a unified machine learning method for electronic structures of organic molecules using the gold-standard CCSD(T) calculations as training data. Tested on hydrocarbon molecules, our model outperforms DFT with several widely used hybrid and double-hybrid functionals in terms of both computational cost and prediction accuracy of various quantum chemical properties.

View Article and Find Full Text PDF

Relaxation process of photoexcited berberine via aggregation and dissociation state-dependent intramolecular electron transfer.

Photochem Photobiol Sci

December 2024

Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji-Shi, Tokyo, 192-0397, Japan.

The fluorescence quantum yield of berberine in aqueous solution is significantly smaller than those of organic solution. The time profile of fluorescence intensity of berberine was analyzed by a bi-exponential function, showing that two kinds of states of berberine exist in the solutions. The observed fluorescence lifetime of shorter lifetime species of berberine in water (0.

View Article and Find Full Text PDF

Background -Smoking is associated with arrhythmia and sudden cardiac death, but the biological mechanisms remain unclear. In electrocardiogram (ECG) recordings abnormal durations of ventricular repolarization (QT interval), atrial depolarization (P wave), and atrioventricular depolarization (PR interval and segment), predict cardiac arrhythmia and mortality. Previous analyses of the National Health and Nutrition Examination Survey (NHANES) database for associations between smoking and ECG abnormalities were incomplete.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!