A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Combining expression and process engineering for high-quality production of human sialyltransferase in Pichia pastoris. | LitMetric

Combining expression and process engineering for high-quality production of human sialyltransferase in Pichia pastoris.

J Biotechnol

Austrian Center of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria; Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12/I, 8010 Graz, Austria. Electronic address:

Published: October 2016

The human β-galactoside α2,6-sialyltransferase I, ST6Gal-I has drawn considerable interest for its use as biocatalyst for in-vitro glycoengineering of recombinantly produced therapeutic proteins. By attaching sialic acid onto the terminal galactoses of biantennary protein N-glycans, ST6Gal-I facilitates protein remodeling towards a humanized glycosylation and thus optimized efficacy in pharmacological use. Secreted expression of ST6Gal-I in Pichia pastoris is promising, but proteolysis restricts both the yield and the quality of the enzyme produced. Focusing on an N-terminally truncated (Δ108) variant of ST6Gal-I previously shown to represent a minimally sized, still active form of ST6Gal-I, we show here that protein expression engineering and optimization of bioreactor cultivation of P. pastoris KM71H (pPICZαB) synergized to enhance the maximum enzyme titer about 57-fold to 17units/L. N-Terminal fusion to the Flag-tag plus deletion of a potential proteolytic site (Lys(114)-Asn→Gln(114)-Asn) improved the intrinsic resistance of Δ108ST6Gal-I to degradation in P. pastoris culture. A mixed glycerol/methanol feeding protocol for P. pastoris growth and induction was key for enzyme production in high yield and quality. The sialyltransferase was recovered from the bioreactor culture in a yield of 70% using a single step of anion-exchange chromatography. Its specific activity was 0.05units/mg protein.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiotec.2016.03.046DOI Listing

Publication Analysis

Top Keywords

pichia pastoris
8
yield quality
8
pastoris
5
st6gal-i
5
combining expression
4
expression process
4
process engineering
4
engineering high-quality
4
high-quality production
4
production human
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!