Although chitosan (CHT, a linear cationic polysaccharide) is biodegradable, biocompatible, non-toxic, and mucoadhesive in nature, the low solubility of CHT in aqueous and alkaline media limits its applicability in pharmaceutical and biomedical field. This necessitate the introduction of new chemically-modified derivatives of CHT those can surmount the solubility barrier. Herein, N,N,N-trimethyl chitosan (TMC), a quaternized hydrophilic derivative of CHT, was synthesized by two-step reductive methylation of CHT and characterized for (1)H NMR and zeta potential measurements. Polyelectrolyte complexes (PECs) based on TMC and dextran sulfate (DS) were prepared via ionic interactions between charged functional groups of former polysaccharides at different pH conditions (pH 5, 8, 10, and 12) and characterized for physicochemical (particle size and zeta potential) and solid- state characterizations (HR-TEM, SEM, FTIR, TGA and XRD). At alkaline pH conditions, the participant polymer chains (TMC and DS) are sufficiently close to form more stable PECs. The release efficiency was assessed after loading a model drug into optimized PEC formulation. Data indicated that the PECs fabricated at alkaline pH presents a reliable formulation for pharmaceutical and biomedical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2016.03.045 | DOI Listing |
Sci Rep
December 2024
Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Kraków, Poland.
Tin sulphide compounds (SnS, x = 1, 2) are potential anode materials for potassium-ion batteries (PIBs) due to their characteristic layered structure, high theoretical capacity, non-toxicity and low production cost. However, they suffer from significant volume changes resulting in poor performance of such anodes. In this work incorporation of SnS into the carbon structure was expected to overcome these disadvantages.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Bacteriology and Virology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran. Electronic address:
This study aimed to examine how mesoporous silica nanoparticles-chitosan-folic acid impacted the release of recombinant Azurin within the tumor environment. The goal was to trigger apoptosis and stimulate immune responses against both transformed and normal cells in BALB/c mice. The study found that the use of rAzu-MSNs-CS-FA, a specific formulation containing mesoporous silica nanoparticles-chitosan-folic acid, resulted in pH-responsive behavior and slower release of rAzurin compared to other groups.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Chemistry, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada.
Chitosan salicylaldehyde/calcium oxide nanoparticle (CS-SL/CaO) was synthesized by hydrothermal process and isolated via different drying processes, namely, air-drying (AD) and freeze-drying (FD). The physicochemical properties of freeze-dried CS-SL/CaO nanoparticle (CS-SL/CaO-FD) and air-dried CS-SL/CaO nanoparticle (CS-SL/CaO-AD) were compared. In particular, the adsorption properties reveal that the specific surface area of CS-SL/CaO-FD increased by ca.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Materials Science and Engineering, Faculty of Engineering & Technology, Tarbiat Modares Universirty, Tehran, Iran.
One of the most effective ways to solve the problems caused by the presence of steel implants in the body is to apply a coating to them. This study aims to develop and optimize composite coatings of magnesium oxide (MgO), 58S bioactive glass (BG), and N-carboxymethyl chitosan (N-CMC) on stainless steel (SS316L) substrates using the electrophoretic deposition (EPD) method. The synthesized materials were characterized using FTIR, XRD, and SEM to confirm their structure and morphology prior to coating.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Yunnan Key Laboratory of Wood Adhesives and Glue Products, Southwest Forestry University, Kunming 650224, PR China; College of Materials and Chemical Engineering, Southwest Forestry University, Kunming 650224, PR China. Electronic address:
The manufacturing of soy-based adhesives with high bonding strength, excellent water resistance, and exceptional environmental performance still faces difficulties. In this work, using glyoxal-urea (GU) resin, chitosan (CS), and soy protein isolate (SPI) as the primary raw materials in order to effectively mitigate the release of free formaldehyde commonly found in traditional wood-based panels. Obtaining an adhesive with high strength, excellent water resistance, and a stable cross-linking structure of GU/CS/SPI (CS represents different mass fractions of chitosan solution).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!