Homeostasis transgressions of enteral medium including disbiotic ones are often accompanying deseases of digestive tract. Espessially it touches upon sick persons connected with probe nourishing. One of the way for solving this problem is normalization of digestion microflore by means of wares with nanotechnological modifications of walls (probes, stomic tubes) which provide them antimicrobial properties and assist to normalization of digestive microbiotis and enteral homeostasis completely. The aim to study is research of antimicrobial activity of of nanostructured barrier layers based on polyethyleneterephthalate (PET) in relation to clinical straines of microorganisms. For barrier layer creation the approach on the base of methods of ion-plasma technology was used including ion-plasma treatment (nanostructuring) of the surface by ions noble and chemically active gases and following formation nanodimensional carbon films on the surface/ For the study of antimicrobial activity in relation to clinical straines of microorganisms we used the technique which allowed to establish the influence of parting degree of microorganisms suspension and time for samples exposing and microorganisms adsorbed on the surface. In experiment clinical straines obtained from different materials were used: Staphylococcus Hly+ and Calbicans--from pharyngeal mucosa, E. coli--from feces, K.pneumoniae--from urine. Sharing out and species identification of microorganisms were fulfilled according with legasy documents. In results of the study itwas obtained not only the presence of staticticaly confirmed antimicrobial activity of PET samples with nanostructured barrier layers in relation to different stimulators of nosocomical infections but also the influence of different factors connected with formation of nanostructured layers and consequently based with them physicochemical characteristics such as, in particular, surface energy, surface relief parameters, surface charg and others, as well as influence of microorganisms nature onto the interaction of between barrier layers and microorganisms.

Download full-text PDF

Source

Publication Analysis

Top Keywords

barrier layers
16
clinical straines
16
nanostructured barrier
12
relation clinical
12
straines microorganisms
12
antimicrobial activity
12
layers based
8
based polyethyleneterephthalate
8
microorganisms
8
sick persons
8

Similar Publications

The gut barrier encompasses several interactive, physical, and functional components, such as the gut microbiota, the mucus layer, the epithelial layer and the gut mucosal immunity. All these contribute to homeostasis in a well-regulated manner. Nevertheless, this frail balance might be disrupted for instance by westernized dietary habits, infections, pollution or exposure to antibiotics, thus diminishing protective immunity and leading to the onset of chronic diseases.

View Article and Find Full Text PDF

This study addresses the issue of effective carrier injection to quantum wells in laser diode structures. The nitride light emitting structures used in this study were fabricated by Metal-Organic Vapor Phase Epitaxy (MOVPE). We developed three distinct sets of samples, with varying quantum barrier thickness, different QWs indium composition and different position relative to the p- and n-sides of the structure.

View Article and Find Full Text PDF

Limiting animal experiments is essential for ethical issues and also because scientific evidence highlights the discrepancies between human and animal metabolism. This review aims to provide a critical discussion of the strengths and limitations of the most appropriate intestine model to answer complex research questions in pharmaceutical and nutraceutical fields. This review describes the components contributing to the definition of the gut barrier structure, from the outer mucus layer to the inner part of lamina propria, including endothelial and neuronal networks.

View Article and Find Full Text PDF

Owing to its high spatial resolution and its high sensitivity to chemical element detection, transmission electron microscopy (TEM) technique enables to address high-level materials characterization of advanced technologies in the microelectronics field. TEM instruments fitted with various techniques are well-suited for assessing the local structural and chemical order of specific details. Among these techniques, 4D-STEM is suitable to estimate the strain distribution of a large field of view.

View Article and Find Full Text PDF

Fabrication of oat β-glucan-starch composite systems by sequential extraction as batters for deep-fried mushrooms to prevent oil penetration.

Food Chem

January 2025

Department of Food Science, College of Light Industry, Liaoning University, Shenyang 110031, Liaoning Province, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning Province, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, Jiangxi Province, China. Electronic address:

Deep-fat frying (DF) of mushrooms is favored by consumers due to its appealing sensory characteristics. However, their high oil absorption can lead to obesity and elevated cholesterol levels. Therefore, developing healthy food coatings as oil barriers and water-holding layers is essential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!