A new series of benzothiazole amide and urea derivatives tethered with the privileged pyridylamide moiety by ether linkage at the 6-position of benzothiazole (22 final compounds) has been designed and synthesized as potent anticancer sorafenib analogs. A selected group of twelve derivatives was appraised for its antiproliferative activity over a panel of 60 human cancer cell lines at a single dose concentration of 10 μM at National Cancer Institute (NCI, USA). Compounds 4b, 5a, 5b and 5d exhibited promising growth inhibitions and thus were further tested in advanced 5-dose testing assay to determine their GI50 values. The cellular based assay results revealed that 3,5-bis-trifluoromethylphenyl (5b) urea member is the best derivative with superior potency and efficacy compared to sorafenib as well as notable extended spectrum activity covering 57 human cancer cell lines. Kinase screening of compound 5b showed its kinase inhibitory effect against both B-Raf(V600E) and C-Raf. Moreover, the most potent derivatives in cells were investigated for their RAF inhibitory activities, and the results were rationalized with the molecular docking study. Profiling of CYP450 and hERG channel inhibitory effects for the active compounds revealed their low possibilities to exhibit undesirable drug-drug interactions and cardiac side effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2016.02.039 | DOI Listing |
J Med Chem
January 2025
Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena I-41125, Italy.
Adenosine-mediated activation of AR drives immunosuppressive signaling in high-adenosine tumor microenvironments (TMEs), impeding anticancer immunity. Targeting AR with negative allosteric modulators (NAMs) is a promising approach for cancer immunotherapy: unlike the orthosteric antagonists currently in use, which face competitive and off-target limitations, NAMs leverage a noncompetitive, saturable mechanism that enhances receptor selectivity. The development of a novel series of AR NAMs demonstrates potent activity within high-adenosine TMEs, underscoring a significant translational potential in oncology.
View Article and Find Full Text PDFNucl Med Mol Imaging
February 2025
Nuclear Fuel Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran.
Purpose: Curcumin as a potent anti-inflammatory and cancer-prevention molecule was labeled with n.c.a Lu.
View Article and Find Full Text PDFMol Pharm
January 2025
Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States.
Chemotherapy-induced peripheral neuropathy (CIPN) is a serious side effect of anticancer agents with limited effective preventive or therapeutic interventions. Although fenofibrate, a peroxisome proliferator-activated receptor-alpha (PPARα) agonist, has demonstrated neuroprotective and analgesic properties, its clinical utility is hindered by low receptor affinity, poor subtype selectivity, and suboptimal bioavailability. A190, a highly selective and potent nonfibrate PPARα agonist, offers a promising alternative but is limited by poor aqueous solubility, resulting in reduced oral bioavailability and therapeutic efficacy.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia.
The rapid advancement of nanotechnology, particularly in the realm of pharmaceutical sciences, has significantly transformed the potential for treating life-threatening diseases. A pivotal aspect of this evolution is the emergence of "green nanotechnology," which emphasizes the environmentally sustainable synthesis of raw materials through biological processes. This review focuses on the biological synthesis and application of zinc oxide (ZnO) nanoparticles (NPs) from probiotic bacteria, particularly those sourced from wastewater.
View Article and Find Full Text PDFCurr Top Med Chem
January 2025
Medicinal Chemistry Department, Theodor Bilharz Research Institute Kornaish El Nile, Warrak El-Hadar, Imbaba (P.O. 30), Giza 12411, Egypt.
Background: Research into oxidative stress, cancer, and natural products revealed promising avenues for therapeutic intervention. Natural products are considered potent pharmaceuticals in combating oxidative stress and its relationship with cancer.
Methods: This study was carried out to evaluate the chemical profile and antioxidant activities using DPPH, ABTS, Phenanthroline, Cupric, Phosphomolybdenum, FRAP, Hydroxyl, Iron chelation in vitro assays, and anticancer properties by MTT method of Cistus creticus extracts.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!