Design and synthesis of new potent anticancer benzothiazole amides and ureas featuring pyridylamide moiety and possessing dual B-Raf(V600E) and C-Raf kinase inhibitory activities.

Eur J Med Chem

Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology (KIST), Hwarangro 14-gil 5, Seongbuk-gu, Seoul 136-791, Republic of Korea; Department of Biological Chemistry, Korea University of Science and Technology (UST), Gajungro 217, Youseong-gu, Daejeon 305-350, Republic of Korea. Electronic address:

Published: June 2016

A new series of benzothiazole amide and urea derivatives tethered with the privileged pyridylamide moiety by ether linkage at the 6-position of benzothiazole (22 final compounds) has been designed and synthesized as potent anticancer sorafenib analogs. A selected group of twelve derivatives was appraised for its antiproliferative activity over a panel of 60 human cancer cell lines at a single dose concentration of 10 μM at National Cancer Institute (NCI, USA). Compounds 4b, 5a, 5b and 5d exhibited promising growth inhibitions and thus were further tested in advanced 5-dose testing assay to determine their GI50 values. The cellular based assay results revealed that 3,5-bis-trifluoromethylphenyl (5b) urea member is the best derivative with superior potency and efficacy compared to sorafenib as well as notable extended spectrum activity covering 57 human cancer cell lines. Kinase screening of compound 5b showed its kinase inhibitory effect against both B-Raf(V600E) and C-Raf. Moreover, the most potent derivatives in cells were investigated for their RAF inhibitory activities, and the results were rationalized with the molecular docking study. Profiling of CYP450 and hERG channel inhibitory effects for the active compounds revealed their low possibilities to exhibit undesirable drug-drug interactions and cardiac side effects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2016.02.039DOI Listing

Publication Analysis

Top Keywords

potent anticancer
8
pyridylamide moiety
8
b-rafv600e c-raf
8
kinase inhibitory
8
inhibitory activities
8
human cancer
8
cancer cell
8
cell lines
8
design synthesis
4
synthesis potent
4

Similar Publications

Negative Allosteric Modulators of AR: A New Weapon for Cancer Immunotherapy?

J Med Chem

January 2025

Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena I-41125, Italy.

Adenosine-mediated activation of AR drives immunosuppressive signaling in high-adenosine tumor microenvironments (TMEs), impeding anticancer immunity. Targeting AR with negative allosteric modulators (NAMs) is a promising approach for cancer immunotherapy: unlike the orthosteric antagonists currently in use, which face competitive and off-target limitations, NAMs leverage a noncompetitive, saturable mechanism that enhances receptor selectivity. The development of a novel series of AR NAMs demonstrates potent activity within high-adenosine TMEs, underscoring a significant translational potential in oncology.

View Article and Find Full Text PDF

Chemotherapy-induced peripheral neuropathy (CIPN) is a serious side effect of anticancer agents with limited effective preventive or therapeutic interventions. Although fenofibrate, a peroxisome proliferator-activated receptor-alpha (PPARα) agonist, has demonstrated neuroprotective and analgesic properties, its clinical utility is hindered by low receptor affinity, poor subtype selectivity, and suboptimal bioavailability. A190, a highly selective and potent nonfibrate PPARα agonist, offers a promising alternative but is limited by poor aqueous solubility, resulting in reduced oral bioavailability and therapeutic efficacy.

View Article and Find Full Text PDF

The rapid advancement of nanotechnology, particularly in the realm of pharmaceutical sciences, has significantly transformed the potential for treating life-threatening diseases. A pivotal aspect of this evolution is the emergence of "green nanotechnology," which emphasizes the environmentally sustainable synthesis of raw materials through biological processes. This review focuses on the biological synthesis and application of zinc oxide (ZnO) nanoparticles (NPs) from probiotic bacteria, particularly those sourced from wastewater.

View Article and Find Full Text PDF

Background: Research into oxidative stress, cancer, and natural products revealed promising avenues for therapeutic intervention. Natural products are considered potent pharmaceuticals in combating oxidative stress and its relationship with cancer.

Methods: This study was carried out to evaluate the chemical profile and antioxidant activities using DPPH, ABTS, Phenanthroline, Cupric, Phosphomolybdenum, FRAP, Hydroxyl, Iron chelation in vitro assays, and anticancer properties by MTT method of Cistus creticus extracts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!