Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
High-spin gadolinium(III) and manganese(II) complexes have emerged as alternatives to standard nitroxide radical spin labels for measuring nanometric distances by using pulsed electron-electron double resonance (PELDOR or DEER) at high fields/frequencies. For certain complexes, particularly those with relatively small zero-field splitting (ZFS) and short distances between the two metal centers, the pseudosecular term of the dipolar coupling Hamiltonian is non-negligible. However, in general, the contribution from this term during conventional data analysis is masked by the flexibility of the molecule of interest and/or the long tethers connecting them to the spin labels. The efficient synthesis of a model system consisting of two [Mn(dota)](2-) (MnDOTA; DOTA(4-) =1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate) directly connected to the ends of a central rodlike oligo(phenylene-ethynylene) (OPE) spacer is reported. The rigidity of the OPE is confirmed by Q-band PELDOR measurements on a bis-nitroxide analogue. The Mn(II) -Mn(II) distance distribution profile determined by W-band PELDOR is in reasonable agreement with one simulated by using a simple rotamer analysis. The small degree of flexibility arising from the linking MnDOTA arm appears to outweigh the contribution from the pseudosecular term at this interspin distance. This study illustrates the potential of MnDOTA-based spin labels for measuring fairly short nanometer distances, and also presents an interesting candidate for in-depth studies of pulsed dipolar spectroscopy methods on Mn(II) -Mn(II) systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.201600234 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!