MicroRNAs (miRs) are non-coding gene transcripts abundantly expressed in both the developing and adult mammalian brain. They act as important modulators of complex gene regulatory networks during neuronal development and plasticity. miR-181c is highly abundant in cerebellar cortex and its expression is increased in autism patients as well as in an animal model of autism. To systematically identify putative targets of miR-181c, we repressed this miR in growing cortical neurons and found over 70 differentially expressed target genes using transcriptome profiling. Pathway analysis showed that the miR-181c-modulated genes converge on signaling cascades relevant to neurite and synapse developmental processes. To experimentally examine the significance of these data, we inhibited miR-181c during rat cortical neuronal maturation in vitro; this loss-of miR-181c function resulted in enhanced neurite sprouting and reduced synaptogenesis. Collectively, our findings suggest that miR-181c is a modulator of gene networks associated with cortical neuronal maturation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4982812PMC
http://dx.doi.org/10.1007/s00018-016-2179-0DOI Listing

Publication Analysis

Top Keywords

cortical neurons
8
cortical neuronal
8
neuronal maturation
8
mir-181c
5
microrna-181 promotes
4
promotes synaptogenesis
4
synaptogenesis attenuates
4
attenuates axonal
4
axonal outgrowth
4
cortical
4

Similar Publications

Bayesian Phylogenetic Lineage Reconstruction with Loss of Heterozygosity Mutations Derived from Single-Cell RNA Sequencing.

Methods Mol Biol

January 2025

Allen Discovery Center for Lineage Tracing and Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, USA.

Mutations are acquired frequently, such t`hat each cell's genome inscribes its history of cell divisions. Loss of heterozygosity (LOH) accumulates throughout the genome, offering large encoding capacity for phylogenetic inference of cell lineage.In this chapter, we demonstrate a method, using single-cell RNA sequencing, for reconstructing cell lineages from inferred LOH events in a Bayesian manner, annotating the lineage with cell phenotypes, and marking developmental time points based on X-chromosome inactivation.

View Article and Find Full Text PDF

Human GABAergic inhibitory neurons (INs) in the telencephalon play crucial roles in modulating neural circuits, generating cortical oscillations, and maintaining the balance between excitation and inhibition. The major IN subtypes are based on their gene expression profiles, morphological diversity and circuit-specific functions. Although previous foundational work has established that INs originate in the ganglionic eminence regions in mice, recent studies have questioned origins in humans and non-human primates.

View Article and Find Full Text PDF

Neural precursor cells (NPCs) are a group of cells with self-renewal and multi-differentiation potential. MicroRNAs are required for neurogenesis in the central nervous system (CNS). Recent reports suggest that miR-1224 is important in human CNS diseases.

View Article and Find Full Text PDF

A collicular map for touch-guided tongue control.

Nature

January 2025

Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA.

Accurate goal-directed behaviour requires the sense of touch to be integrated with information about body position and ongoing motion. Behaviours such as chewing, swallowing and speech critically depend on precise tactile events on a rapidly moving tongue, but neural circuits for dynamic touch-guided tongue control are unknown. Here, using high-speed videography, we examined three-dimensional lingual kinematics as mice drank from a water spout that unexpectedly changed position during licking, requiring re-aiming in response to subtle contact events on the left, centre or right surface of the tongue.

View Article and Find Full Text PDF

The occurrence and progression of traumatic brain injury involve a complex process. The pathophysiological mechanisms triggered by neuronal damage include various forms of programmed cell death, including ferroptosis. We observed upregulation of TNFAIP3 in mice after traumatic brain injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!