Yuma Proving Grounds (YPG) in western Arizona is a testing range where Depleted uranium (DU) penetrators have been historically fired. A portion of the fired DU penetrators are being managed under controlled conditions by leaving them in place. The widespread use of DU in armor-penetrating weapons has raised environmental and human health concerns. The present study is focused on the onsite management approach and on the potential interactions with plants local to YPG. A 30 day study was conducted to assess the toxicity of DU corrosion products (e.g., schoepite and meta-schoepite) in two grass species that are native to YPG, Bermuda (Cynodon dactylon) and Purple Threeawn (Aristida purpurea). In addition, the ability for plants to uptake DU was studied. The results of this study show a much lower threshold for biomass toxicity and higher plant concentrations, particularly in the roots than shoots, compared to previous studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00128-016-1784-9 | DOI Listing |
Appl Radiat Isot
January 2025
Nuclear Science and Technology Research Institute (NSTRI), P.O. Box: 14155-1339, Tehran, Iran.
In molybdenum-99 (Mo) production facilities via the fission method, appropriate transportation containers must be used to transfer irradiated targets from the irradiation facility to the processing facility, following the requirements for transferring radioactive materials. In the Mo production industrial plan of Iran, the transportation container must be capable of carrying a holster containing nine irradiated low-enriched uranium targets, known as a hot batch. In this article, the proper shielding of two-layer containers based on the gamma spectrum emitted from the radioisotope inventory of a local hot batch, including fission products, activation products, and other radioisotopes produced from their decay chains, was investigated by using Monte Carlo code MCNP6.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Institute of Combined Injury, State Key Laboratory of Trauma and Chemical Poisoning, Military Key Laboratory of Nanomedicine, Department of Military Preventive Medicine, Army Medical University, Chongqing 400038, China. Electronic address:
Uranium poisoning, particularly from exposure to Depleted Uranium (DU), occurs when uranyl ions enter the bloodstream and bind primarily to transferrin, osteopontin, and albumin before entering cells via corresponding receptors on renal tubular membranes, leading to cellular damage. Uranium poisoning remains a significant clinical challenge, with no ideal treatment currently available. In this study, we investigate the therapeutic potential of human umbilical cord-derived mesenchymal stem cell exosomes (MSC-EXs) in mice exposed to DU.
View Article and Find Full Text PDFArch Toxicol
December 2024
State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China.
Depleted uranium (DU) is a byproduct of uranium enrichment, which can cause heavy-metal toxicity and radiation toxicity as well as serious damage to the kidneys. However, the mechanism of renal injury induced by DU is still unclear. This study aimed to explore the role of ethylmalonic encephalopathy 1 (ETHE1) in DU-induced mitochondrial dysfunction and elucidate the underlying mechanisms.
View Article and Find Full Text PDFChemistry
December 2024
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China.
With the depletion of fossil fuels and increasing pollution problems, green and sustainable energy supply attracts worldwide attention. Hydrogen is a green and high-density energy substance, and photocatalytic hydrogen generation is an effective and sustainable method. Therefore, developing high-performance photocatalysts plays a crucial role in practical application.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!