Two isolates of a novel bipartite begomovirus, tentatively named malvastrum bright yellow mosaic virus (MaBYMV), were molecularly characterized from naturally infected plants of the genus Malvastrum showing bright yellow mosaic disease symptoms in South Texas. Six complete DNA-A and five DNA-B genome sequences of MaBYMV obtained from the isolates ranged in length from 2,608 to 2,609 nucleotides (nt) and 2,578 to 2,605 nt, respectively. Both genome segments shared a 178- to 180-nt common region. In pairwise comparisons, the complete DNA-A and DNA-B sequences of MaBYMV were most similar (87-88 % and 79-81 % identity, respectively) and phylogenetically related to the corresponding sequences of sida mosaic Sinaloa virus-[MX-Gua-06]. Further analysis revealed that MaBYMV is a putative recombinant virus, thus supporting the notion that malvaceous hosts may be influencing the evolution of several begomoviruses. The design of new diagnostic primers enabled the detection of MaBYMV in cohorts of Bemisia tabaci collected from symptomatic Malvastrum sp. plants, thus implicating whiteflies as potential vectors of the virus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00705-016-2821-z | DOI Listing |
Plants (Basel)
January 2025
Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca Cerealicoltura e Colture Industriali, via Stezzano 24, 24126 Bergamo, Italy.
Carotenoids, the bright yellow, orange, and red pigments of many fruits and vegetables, are essential components of the human diet as bioactive compounds not synthesized in animals. As a staple crop potato has the potential to deliver substantial amounts of these nutraceuticals despite their lower concentration in tubers compared to edible organs of other plant species. Even small gains in tuber carotenoid levels could have a significant impact on the nutritional value of potatoes.
View Article and Find Full Text PDFMar Drugs
December 2024
Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB), Via Campi Flegrei 34, 80078 Pozzuoli, Napoli, Italy.
The waters around the western Antarctic Peninsula are experiencing fast warming due to global change, being among the most affected regions on the planet. This polar area is home to a large and rich community of benthic marine invertebrates, such as sponges, tunicates, corals, and many other animals. Among the sponges, the bright yellow is commonly known for using secondary diterpenoids as a defensive mechanism against local potential predators.
View Article and Find Full Text PDFNano Lett
January 2025
Synergetic Extreme Condition High-Pressure Science Center, State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China.
Covalent-organic frameworks (COFs) are dynamic covalent porous organic materials constructed from emissive molecular organic building blocks. However, most two-dimensional (2D) COFs are nonemissive or weakly emissive in the solid state owing to the intramolecular rotation and vibration together with strong π-π interactions. Herein, we report a pressure strategy to achieve the bright multicolor emission from yellow to red in the 2D triazine triphenyl imine COF (TTI-COF).
View Article and Find Full Text PDFPlant Foods Hum Nutr
January 2025
UNCPBA, Facultad de Ingeniería, Departamento de Ingeniería Química y Tecnología de los Alimentos, TECSE, Olavarría, Buenos Aires, Argentina.
The growing consumer demand for healthier foods that help reduce the risk of chronic diseases has driven the food industry to innovate with nutritionally and technologically viable products. This trend and the nutritional gaps in gluten-free diets have spurred the exploration of unconventional, high-quality ingredients like flour from pseudocereals, legumes, and oilseeds. This study evaluated the nutritional and functional profiles of chia expeller and flours from buckwheat, green/yellow peas, and rice to study their potential as techno-functional ingredients for new gluten-free premixes.
View Article and Find Full Text PDFOrganic cocrystals have garnered significant research attention owing to their distinctive properties and promising applications. However, challenges in molecular structure design and control of intermolecular interactions continue to impede further advancements. In this study, two novel cocrystals were successfully formed from a series of synthesized benzotriazole derivatives.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!