Composite sequential bypass grafting is an effective alternative in the treatment of peripheral vascular disease when autologous vein is limited. We describe a modified technique for composite sequential bypass grafting anastomosis using a combination of synthetic graft with native vein connected via a common intermediate anastomotic junction, which also benefits from having additional outflow at the native, noncontiguous arteriotomy in a diamond configuration. This technique was piloted on six patients to treat critical limb ischemia when no other revascularization options were deemed suitable. Limb salvage with resolution of symptoms was achieved in all six patients at the 6-month follow-up. The diamond anastomosis is a promising method to maximize limb salvage using a unique composite sequential bypass configuration when native vein is limited.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jvs.2015.12.019DOI Listing

Publication Analysis

Top Keywords

composite sequential
16
sequential bypass
16
bypass grafting
12
critical limb
8
limb ischemia
8
vein limited
8
native vein
8
limb salvage
8
diamond intermediate
4
intermediate anastomosis
4

Similar Publications

The one-pot terpolymerization of epoxide (EP), anhydride (AH), and CO to synthesize polyester-polycarbonate copolymers with precise sequences remains a significant challenge in polymer chemistry. In this study, promising progress was achieved by utilizing a cyclic trimeric phosphazene base (CTPB) and triethylboron (TEB) as a binary catalyst, enabling the synthesis of both well-defined block and truly random poly(ester-carbonate) copolymers through the one-pot terpolymerization of EP/AH/CO. By adjusting the molar ratio of CTPB/TEB to 1/0.

View Article and Find Full Text PDF

Case: We present a 42-year-old man who developed extensive left lower extremity arterial thrombosis following COVID-19 pneumonia. Despite multiple revascularization attempts and a below-knee amputation, he faced wound necrosis and insufficient soft tissue coverage. An innovative approach using a pedicled flap and sequential flow-through free flaps was used for limb salvage.

View Article and Find Full Text PDF

Unique hierarchical NiFe-LDH/Ni/NiCoS heterostructure arrays on nickel foam for the improvement of overall water splitting activity.

Nanoscale

January 2025

Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing, 401331, PR China.

The development of environmentally friendly, high-efficiency, stable, earth-abundant and non-precious metal-based electrocatalysts with fast kinetics and low overpotential for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is of exceeding significance but still challenging. Herein, a bifunctional electrode of unique hierarchical NiFe-LDH/Ni/NiCoS/NF (NiFe-LDH = nickel-iron layered double hydroxide and NF = nickel foam) electrocatalytic architecture, which is built up from NiFe-LDH nanosheets, Ni nanoparticles and NiCoS nanoneedles sequentially arrayed on a porous NF substrate, has been prepared by a facile hydrothermal and electrodeposition method. This electrocatalytic architecture is binder-free and its outer NiFe-LDH nanosheets can effectively prevent the oxidation of inner Ni nanoparticles and corrosion of NiCoS nanoneedles during water electrolysis.

View Article and Find Full Text PDF

Expanding the chemical coverage of polar compounds in water analysis by coupling supercritical fluid with hydrophilic interaction chromatography high-resolution mass spectrometry.

Anal Chim Acta

March 2025

Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands; Centre for Analytical Sciences Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands. Electronic address:

Background: Persistent and mobile organic compounds (PMOC) are of great concern for water quality and human health. The recent improvement and availability of high-resolution mass spectrometry in combination with liquid chromatography have widely expanded the potential of analytical workflows for their detection and quantitation in water. Given their high polarity, the detection of some PMOC requires alternative techniques to reversed-phase chromatography, such as hydrophilic interaction liquid chromatography (HILIC) and supercritical fluid chromatography (SFC).

View Article and Find Full Text PDF

For the computational design of new polymeric materials, accurate methods for determining the glass transition temperature () are required. We apply an ensemble approach in molecular dynamics (MD) and examine its predictions of and their associated uncertainty. We separate the uncertainty into the aleatoric contributions arising from dynamical chaos and that due to the computational scenarios chosen to compute .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!