Disruption of the sigS gene attenuates the local innate immune response to Staphylococcus aureus in a mouse mastitis model.

Vet Microbiol

INRA, UMR 1253 STLO, 65 rue de Saint Brieuc, 35042 Rennes Cedex, France; Agrocampus Ouest, UMR1253 STLO, 85 rue de Saint Brieuc, 35042 Rennes Cedex, France. Electronic address:

Published: April 2016

Staphylococcus aureus (S. aureus) is a major pathogen involved in ruminant mastitis and present worldwide. Clinical signs of S. aureus mastitis vary considerably and are largely dependent on strain-specific factors. A comparison of two S. aureus strains that reproducibly induced either severe (O11) or mild (O46) mastitis in ewes revealed that the transcriptional regulator sigS was mutated in O46 (Le Maréchal et al., 2011. PLoS One. 6 (11) e27354. doi:10.1371/journal.pone.0027354). In the present paper, we analysed the sigS sequence in 18 other S. aureus strains isolated from goat or ewe mastitis and found a 4-bp deletion similar to that of the O46 sigS gene in three strains associated with subclinical ewe mastitis. This sigS gene was disrupted in strain O11 (O11ΔsigS), so our aim was to investigate its involvement in the severity of infections in the context of mastitis. The wild type (wt) and mutant strains were then characterized in vitro to determine the involvement of sigS in the response S. aureus under various stress conditions, and assess its influence on the cytotoxicity of the pathogen, its invasive capacity and biofilm formation. The strains were compared in vivo in an experimental mouse mastitis model in which clinical signs and cytokine production were evaluated at 24h post-infection. While no significant differences in the effect on bacterial growth between O11 and O11ΔsigS were observed either in vitro or in vivo, a significantly weaker in vivo production of interleukin (IL)-1α, IL-1β, and Tumor Necrosis Factor (TNF)-α was measured in the mammary glands infected with the mutant strain, suggesting that infection with O11ΔsigS induced an attenuated local innate immune response. These results suggest an impact of sigS disruption on S. aureus pathogenesis in a ruminant mastitis context. This disruption is probably involved in, and may partly explain, the milder symptoms previously observed in S. aureus O46-induced mastitis in ewes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vetmic.2016.02.014DOI Listing

Publication Analysis

Top Keywords

sigs gene
12
mastitis
10
aureus
9
local innate
8
innate immune
8
immune response
8
staphylococcus aureus
8
mouse mastitis
8
mastitis model
8
ruminant mastitis
8

Similar Publications

The increasing challenges posed by plant viral diseases demand innovative and sustainable management strategies to minimize agricultural losses. Exogenous double-stranded RNA (dsRNA)-mediated RNA interference (RNAi) represents a transformative approach to combat plant viral pathogens without the need for genetic transformation. This review explores the mechanisms underlying dsRNA-induced RNAi, highlighting its ability to silence specific viral genes through small interfering RNAs (siRNAs).

View Article and Find Full Text PDF

Background: Fusarium head blight (FHB) is a major disease affecting cereal crops including wheat, barley, rye, oats and maize. Its predominant causal agent is the ascomycete fungus Fusarium graminearum, which infects the spikes and thereby reduces grain yield and quality. The frequency and severity of FHB epidemics has increased in recent years, threatening global food security.

View Article and Find Full Text PDF

Molecular target for sprayable double-stranded RNA-based biopesticide against Amphitetranychus viennensis (Acari, Tetranychidae).

Int J Biol Macromol

December 2024

College of Plant Protection, Shanxi Agricultural University, Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan 030031, Shanxi, China. Electronic address:

Amphitetranychus viennensis, a destructive pest mite of fruit plants in Europe and Asia, poses a serious challenge due to its adaptability and resistance to multiple acaricides. RNA interference (RNAi)-based technologies offer a promising alternative to address this emerging issue. In this study, we screened for candidate genes that can be targeted for spray-induced gene silencing (SIGS).

View Article and Find Full Text PDF

Effect analysis of S5-interacting genes on rice hybrid sterility using nontransgenic gamete killer.

Plant Sci

December 2024

State Key Laboratory for Conservation and Utilization of Subtropical Agro Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China. Electronic address:

While hybrids between japonica and indica rice exhibit strong heterosis, they often suffer from hybrid sterility (HS). Hybrid fertility of the embryo sac is predominantly regulated by a three-gene system (comprising closely linked ORF3, ORF4 and ORF5) at rice S5 locus. The cooperation of ORF5+ and ORF4+ can result in endoplasmic reticulum (ER) stress and sporophytically kill all embryo sacs, while ORF3+ can gametophytically protect the residing embryo sac.

View Article and Find Full Text PDF

The Bacteria-Derived dsRNA Was Used for Spray-Induced Gene Silencing for Rice False Smut Control.

J Agric Food Chem

December 2024

Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.

False smut caused by is one of the most destructive diseases in rice. The disease is primarily controlled with fungicides, leading to the development of fungicide resistance. Although spray-induced gene silencing (SIGS) has been utilized for disease management, it has not been applied to control rice false smut.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!