Optical mapping of Ca(2+)-sensitive fluorescence probes has become an extremely useful approach and adopted by many cardiovascular research laboratories to study a spectrum of myocardial physiology and disease conditions. Optical mapping data are often displayed as detailed pseudocolor images, providing unique insight for interpreting mechanisms of ectopic activity, action potential and Ca(2+) transient alternans, tachycardia, and fibrillation. Ca(2+)-sensitive fluorescent probes and optical mapping systems continue to evolve in the ongoing effort to improve therapies that ease the growing worldwide burden of cardiovascular disease. In this technical review we provide an updated overview of conventional approaches for optical mapping of Cai (2+) within intact myocardium. In doing so, a brief history of Cai (2+) probes is provided, and nonratiometric and ratiometric Ca(2+) probes are discussed, including probes for imaging sarcoplasmic reticulum Ca(2+) and probes compatible with potentiometric dyes for dual optical mapping. Typical measurements derived from optical Cai (2+) signals are explained, and the analytics used to compute them are presented. Last, recent studies using Cai (2+) optical mapping to study arrhythmias, heart failure, and metabolic perturbations are summarized.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4935510 | PMC |
http://dx.doi.org/10.1152/ajpheart.00665.2015 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!