Thymosin β4 is a 43 amino acid long peptide with an acetylated N-terminal serin that has a high potential as a remedy for healing ulcers, wounds and burns. Although protein biosynthesis offers attractive opportunities in terms of a large-scale production, currently thymosin β4 is mainly produced by chemical synthesis. The problems that hinder the successful commercialization of the biotechnological approach are associated with the small peptides expression and N-terminal acetylation. This work presents an innovative biotechnological method for thymosin β4 production that employs the peptide acetylation in vivo. A genetically engineered construct was created, where the Tβ4 coding sequence fused with the intein Mxe GyrA sequence and chitin-binding domain was combined with the acetyltransferase coding sequence to form a polycistronic construct under a stringent control of T7 promoter. This plasmid construct provided for the expression of the Tβ4-intein fusion protein. In the process of the post-translational modification in vivo formyl methionine was completely removed from the target peptide N-terminus and followed by the Tβ4 precursor N-terminal acetylation. The use of the intein-mediated expression system made it possible to extract thymosin β4 in only 2 chromatographic runs. The method is straightforward to implement and scale up.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiotec.2016.02.021DOI Listing

Publication Analysis

Top Keywords

thymosin β4
20
fusion protein
8
n-terminal acetylation
8
coding sequence
8
thymosin
5
β4
5
development intein-mediated
4
intein-mediated method
4
method production
4
production recombinant
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!