In a series of experiments, Bott and Noveck (2004) found that the computation of scalar inferences, a variety of conversational implicature, caused a delay in response times. In order to determine what aspect of the inferential process that underlies scalar inferences caused this delay, we extended their paradigm to three other kinds of inferences: free choice inferences, conditional perfection, and exhaustivity in "it"-clefts. In contrast to scalar inferences, the computation of these three kinds of inferences facilitated response times. Following a suggestion made by Chemla and Bott (2014), we propose that the time it takes to compute a conversational implicature depends on the structural characteristics of the required alternatives.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/cogs.12362 | DOI Listing |
Biometrics
January 2025
School of Statistics and Management, Shanghai University of Finance and Economics, Shanghai 200433, China.
As a commonly employed method for analyzing time-to-event data involving functional predictors, the functional Cox model assumes a linear relationship between the functional principal component (FPC) scores of the functional predictors and the hazard rates. However, in practical scenarios, such as our study on the survival time of kidney transplant recipients, this assumption often fails to hold. To address this limitation, we introduce a class of high-dimensional partially linear functional Cox models, which accommodates the non-linear effects of functional predictors on the response and allows for diverging numbers of scalar predictors and FPCs as the sample size increases.
View Article and Find Full Text PDFBiostatistics
December 2024
Department of Biostatistics, Yale University, 300 George St, New Haven, CT 06511, United States.
Progress in neuroscience has provided unprecedented opportunities to advance our understanding of brain alterations and their correspondence to phenotypic profiles. With data collected from various imaging techniques, studies have integrated different types of information ranging from brain structure, function, or metabolism. More recently, an emerging way to categorize imaging traits is through a metric hierarchy, including localized node-level measurements and interactive network-level metrics.
View Article and Find Full Text PDFRev Sci Instrum
December 2024
Los Alamos National Laboratory, Los Alamos, New Mexico 87547, USA.
We have developed a method to extract density fluctuation measurements from x-ray radiographs of high-energy density (HED) instability growth and turbulence experiments. We use this information to calculate density fluctuation statistics for constraining the performance of turbulent mix models in HED systems. The density calculation combines image filtering, removal of systemic effects such as backlighter variation, calculation of transmission across multiple materials, and use of tracer materials to generate an approximate single-material density field.
View Article and Find Full Text PDFEvol Hum Sci
October 2024
Victoria University of Wellington, New Zealand.
The human sciences should seek generalisations wherever possible. For ethical and scientific reasons, it is desirable to sample more broadly than 'Western, educated, industrialised, rich, and democratic' (WEIRD) societies. However, restricting the target population is sometimes necessary; for example, young children should not be recruited for studies on elderly care.
View Article and Find Full Text PDFPhys Rev E
October 2024
Computational Mechanics Laboratory, Department of Civil Engineering, Indian Institute of Science, Bangalore 560012, India.
Stimulus-induced volumetric phase transition in gels may be potentially exploited for various bioengineering and mechanical engineering applications. Since the discovery of the phenomenon in the 1970s, extensive experimental research has helped understand the phase transition and related critical phenomena. However, little insight is available on the evolving microstructure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!