We have studied, for the first time by electron spectroscopy, the Auger decay of the 4d→nf (n=4,5) resonances in Xe^{5+} ion. By detecting in coincidence the Auger electrons with the resulting Xe^{6+} ions, we unravel the contribution of the different final ionic states to the total cross section measured by ion spectroscopy. A strong intensity of 5s5p satellite lines has been observed, up to 4 times stronger than the 5s^{2} main lines. This unexpected behavior is confirmed by multiconfiguration Dirac-Fock calculations. This technique provides the most stringent test for theoretical models and allows us to disentangle the contribution of ions in the ground and metastable states in the target beam.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.116.103001DOI Listing

Publication Analysis

Top Keywords

auger decay
8
decay 4d→nf
8
4d→nf n=45
8
n=45 resonances
8
resonances xe^{5+}
8
xe^{5+} ion
8
photoelectron spectroscopy
4
spectroscopy ions
4
ions study
4
study auger
4

Similar Publications

Resonant Auger Decay in Benzene.

J Phys Chem A

January 2025

Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States.

We present ab initio calculations of the resonant Auger spectrum of benzene. In the resonant process, Auger decay ensues following the excitation of a core-level electron to a virtual orbital. Hence, resonant Auger decay gives rise to higher-energy Auger electrons compared to nonresonant decay.

View Article and Find Full Text PDF

Laser diodes based on solution-processed semiconductor quantum dots (QDs) present an economical and color-tunable alternative to traditional epitaxial lasers. However, their efficiency is significantly limited by non-radiative Auger recombination, a process that increases lasing thresholds and diminishes device longevity through excessive heat generation. Recent advancements indicate that these limitations can be mitigated by employing spherical quantum wells, or quantum shells (QSs), in place of conventional QDs.

View Article and Find Full Text PDF

The Sweet Cherry Tree Genotype Restricts the Aggressiveness of the Wood Decay Fungi and .

Microorganisms

November 2024

Departamento de Sanidad Vegetal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago 8820808, Chile.

The wood decay fungi and severely threaten the worldwide cultivation of sweet cherry trees ( L.). Both fungi cause similar symptoms, including vascular necrosis, which leads to branch and twig dieback.

View Article and Find Full Text PDF

We present an theoretical method to calculate the resonant Auger spectrum in the presence of ultrafast dissociation. The method is demonstrated by deriving the L-VV resonant Auger spectrum mediated by the 2pσ* resonance in HCl, where the electronic Auger decay and nuclear dissociation occur on the same time scale. The Auger decay rates are calculated within the one-center approximation and are shown to vary significantly with the inter-nuclear distance.

View Article and Find Full Text PDF

Thallium-201 is an Auger electron-emitting radionuclide with significant potential for targeted molecular radiotherapy of cancer. It stands out among other Auger electron emitters by releasing approximately 37 Auger and Coster-Kronig electrons per decay, which is one of the highest numbers in its category. It has also a convenient half-life of 73 h, a stable daughter product, established production methods, and demonstrated high radiotoxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!