We present a parameter estimation technique based on performing joint measurements of a weak interaction away from the weak-value-amplification approximation. Two detectors are used to collect full statistics of the correlations between two weakly entangled degrees of freedom. Without discarding of data, the protocol resembles the anomalous amplification of an imaginary-weak-value-like response. The amplification is induced in the difference signal of both detectors allowing robustness to different sources of technical noise, and offering in addition the advantages of balanced signals for precision metrology. All of the Fisher information about the parameter of interest is collected. A tunable phase controls the strength of the amplification response. We experimentally demonstrate the proposed technique by measuring polarization rotations in a linearly polarized laser pulse. We show that in the presence of technical noise the effective sensitivity and precision of a split detector is increased when compared to a conventional continuous-wave balanced detection technique.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.116.100803 | DOI Listing |
Nat Commun
January 2025
CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui, China.
Control of crack propagation is crucial to make tougher heterogeneous materials. As a crack interacts with material heterogeneities, its front distorts and adopts complex tortuous configurations. While the behavior of smooth cracks with straight fronts in homogeneous materials is well understood, the toughening by rough cracks with tortuous fronts in heterogeneous materials remains unsolved.
View Article and Find Full Text PDFChem Asian J
December 2024
State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
The anomalous expression of microRNA poses a serious threat to human life and health safety, and serves as an important biomarker for cancer detection. In this study, a novel magnetic-assisted DNA logic gate nanomachine triggered by miRNA-21 and miRNA-155 was designed based on the trans-cleavage activity of CRISPR/Cas12a activated by a split DNA activator, using only a single crRNA and signal probe, which simplified the detection procedure and complex nucleic acid amplification. The presence of target molecules, miRNA-21 and miRNA-155, can stimulate the DNA walker machine assembled on magnetic beads, which releases activator under the action of DNAzyme.
View Article and Find Full Text PDFGenes Dis
January 2025
Department of Pharmacology, School of Pharmacy, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China.
Extrachromosomal circular DNA (eccDNA), a chromosome-independent circular DNA, has garnered significant attention due to its widespread distribution and intricate biogenesis in carcinoma. Existing research findings propose that multiple eccDNAs contribute to drug resistance in cancer treatments through complex and interrelated regulatory mechanisms. The unique structure and genetic properties of eccDNA increase tumor heterogeneity.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2024
NASA Langley Research Center, Climate Science Branch, Hampton, VA 23681.
Phys Rev E
May 2024
Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia.
By using the field theoretic renormalization group technique together with the operator product expansion, simultaneous influence of the spatial parity violation and finite-time correlations of an electrically conductive turbulent environment on the inertial-range scaling behavior of correlation functions of a passively advected weak magnetic field is investigated within the corresponding generalized Kazantsev-Kraichnan model in the second order of the perturbation theory (in the two-loop approximation). The explicit dependence of the anomalous dimensions of the leading composite operators on the fixed point value of the parameter that controls the presence of finite-time correlations of the turbulent field as well as on the parameter that drives the amount of the spatial parity violation (helicity) in the system is found even in the case with the presence of the large-scale anisotropy. In accordance with the Kolmogorov's local isotropy restoration hypothesis, it is shown that, regardless of the amount of the spatial parity violation, the scaling properties of the model are always driven by the anomalous dimensions of the composite operators near the isotropic shell.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!