Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Topological states of electrons present new avenues to explore the rich phenomenology of correlated quantum matter. Topological insulators (TIs) in particular offer an experimental setting to study novel quantum critical points (QCPs) of massless Dirac fermions, which exist on the sample's surface. Here, we obtain exact results for the zero- and finite-temperature optical conductivity at the semimetal-superconductor QCP for these topological surface states. This strongly interacting QCP is described by a scale invariant theory with emergent supersymmetry, which is a unique symmetry mixing bosons and fermions. We show that supersymmetry implies exact relations between the optical conductivity and two otherwise unrelated properties: the shear viscosity and the entanglement entropy. We discuss experimental considerations for the observation of these signatures in TIs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.116.100402 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!