Characterization of drug authenticity using thin-layer chromatography imaging with a mobile phone.

J Pharm Biomed Anal

Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 306 North Wright Street, Urbana, IL 61801, USA; Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, 208 North Wright Street, Urbana, IL 61801, USA; Department of Bioengineering, University of Illinois at Urbana-Champaign, 1304 West Springfield Avenue, Urbana, IL 61801, USA. Electronic address:

Published: June 2016

Thin-layer chromatography (TLC) has a myriad of separation applications in chemistry, biology, and pharmacology due to its simplicity and low cost. While benchtop laboratory sample application and detection systems for TLC provide accurate quantitation of TLC spot positions and densities, there are many applications where inexpensive and portable instruments would greatly expand the applicability of the technology. In this work, we demonstrate identity verification and concentration determination of pharmaceutical compounds via TLC using a custom 3D-printed cradle that interfaces with an ordinary mobile phone. The cradle holds the mobile phone's internal, rear-facing camera in a fixed position relative to a UV lamp and a TLC plate that includes a phosphor in the stationary phase. Analysis of photographs thus reveals the locations and intensities of principal spots of UV--absorbing drugs. Automated image analysis software determines the center location and density of dark spots, which, using integrated calibration spots of known drug compounds and concentrations, can be used to determine if a drug has been diluted or substituted. Two independent image processing approaches have been developed that may be selected based upon the processing capabilities of the smartphone. Each approach is able to discern 5% drug concentration differences. Using single-component solutions of nevirapine, amodiaquine, and paracetamol that have been manually applied, the mobile phone-based detection instrument provides measurements that are equivalent to those obtained with a commercially available lab-based desktop TLC densitometer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2016.03.018DOI Listing

Publication Analysis

Top Keywords

thin-layer chromatography
8
mobile phone
8
tlc
6
characterization drug
4
drug authenticity
4
authenticity thin-layer
4
chromatography imaging
4
mobile
4
imaging mobile
4
phone thin-layer
4

Similar Publications

Skin aging, characterized by reduced elasticity, wrinkles, and changes in pigmentation, presents significant challenges in the cosmetics industry. Identifying compounds that can help mitigate these effects is crucial to developing effective anti-aging treatments and improving skin health. An advanced analytical approach for identifying skin anti-aging compounds within complex natural mixtures must be developed to achieve this.

View Article and Find Full Text PDF

The metabolites gluconic acid, 5-ketogluconic acid, proline, and glutamic acid, produced by Pseudomonas reptilivora B-6bs, are industrially important, particularly in food and pharmaceutical sectors. However, producing these metabolites involves biotin supplementation to enhance yields, which is an expensive additive, and reducing its use can significantly lower production costs. Thus, This study aimed to enhance the production of gluconic acid, 5-ketogluconic acid, proline, and glutamic acid without biotin supplementation.

View Article and Find Full Text PDF

Chemical insight into pros and cons of coffees from different regions.

Sci Rep

January 2025

Faculty of Chemistry, Department of Analytical Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12 Str., 80-233, Gdańsk, Poland.

The main aim of this work was to study the chemical composition of eighteen ground coffees from different countries and continents with regard to the content of hazardous substances as radioactive elements (K, Ra, Ra, U, U and Cs), metals, including heavy metals, aluminum and some microelements (V, Cr, Mn, Fe, Co, Ni, Cu, Zn) as well as substances that have a positive effect on human health and well-being (polyphenols, proteins, fats and caffeine). The tests were carried out before and after the brewing process using the following techniques: gamma and beta spectrometry, a microwave-induced plasma optical emission spectrometer (MIP-OES), gravimetric method, UV-Vis spectrophotometry as well as thin-layer chromatography. The leaching percentage of certain elements/compounds in coffee infusions was also measured.

View Article and Find Full Text PDF

A novel, compact, and automated laser ablation dielectric barrier discharge thin layer chromatography-mass spectrometry (LA-DBD-TLC-MS) device was developed for the rapid detection of biogenic amines (BAs) in fishery products. This plug-and-play system integrates thermal desorption via diode laser, DBD plasma ionization, and tandem MS detection, with key operational parameters optimized through experimental and computational methods. Utilizing nanoscale carbon black as a matrix, the device achieved a detection limit of 0.

View Article and Find Full Text PDF

Background: Flavonoids are among the most important compounds found in plants, since laboratory studies have shown them to be a daily requirement in human diets due to their various health benefits. Therefore, this study focused on extracting, purifying, and measuring the antioxidant activity of the flavonoid quercetin, which is widely found in plants and possesses a variety of biological activities, from different plant sources.

Methods: The extraction of quercetin was performed using several methods (chemical, physical, and enzymatic) and several extraction solutions (water, ethanol, and chloroform) from several plants (spinach, dill, Onion Skin, , sumac, digalkhasab chemri, and leelwi chemri).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!