Assessing of local immune response may improve the accuracy of pulmonary tuberculosis (PTB) diagnosis. Many studies have investigated diagnosing PTB based on enzyme-linked immunospot (ELISPOT) assay of bronchoalveolar lavage (BAL) fluid, but the results have been inconclusive. We meta-analyzed the available evidences on overall diagnostic performance of ELISPOT assay of BAL fluid for diagnosing PTB.A systematic literature search was performed using PubMed, Embase, Wangfang, Weipu, and CNKI. Data were pooled on sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR). Overall test performance was summarized using summary receiver operating characteristic curves and the area under the curve (AUC). Deeks test was used to test for potential publication bias.Seven publications with 814 subjects met our inclusion criteria and were included in this meta-analysis. The following pooled estimates for diagnostic parameters were obtained: sensitivity, 0.90 (95% CI: 0.85-0.94); specificity, 0.80 (95% CI: 0.77-0.84); PLR, 5.08 (95% CI: 2.70-9.57); NLR, 0.13 (95% CI: 0.06-0.28); DOR, 49.12 (95% CI: 12.97-186.00); and AUC, 0.96. No publication bias was identified.The available evidence suggests that ELISPOT assay of BAL fluid is a useful rapid diagnostic test for PTB. The results of this assay should be interpreted in parallel with clinical findings and the results of conventional tests.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4998406 | PMC |
http://dx.doi.org/10.1097/MD.0000000000003183 | DOI Listing |
Vaccines (Basel)
December 2024
Division of Clinical Immunology-Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy.
Background/objectives: New SARS-CoV-2 variants are continuously emerging, making it essential to assess the efficacy of vaccine-induced immune protection. Limited information is available regarding T cell responses to BA.2.
View Article and Find Full Text PDFVaccines (Basel)
November 2024
Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.
: Cellular and humoral immunity are key to the immune response against SARS-CoV-2, but the comparability and correlation across different assays remain underexplored. This study compares three T-cell and three antibody assays in two vaccine groups. : This prospective longitudinal cohort study involved 46 naïve healthcare workers: a total of 11 in the homologous mRNA-1273 group (three doses) and 35 in the heterologous ChAd group (two ChAd doses followed by a BNT booster).
View Article and Find Full Text PDFCancers (Basel)
December 2024
Department of Cancer Immunotherapy, Fukuoka General Cancer Clinic, Fukuoka 812-0018, Japan.
: Neoantigens have attracted attention as ideal therapeutic targets for anti-tumour immunotherapy because the T cells that respond to neoantigens are not affected by central immune tolerance. Recent findings have revealed that the activation of CD4-positive T cells plays a central role in antitumor immunity, and thus targeting human leukocyte antigen (HLA) class II-restricted neoantigens, which are targets of CD4-positive T cells, is of significance. However, there are very few detailed reports of neoantigen vaccine therapies that use an HLA class II-restricted long peptide.
View Article and Find Full Text PDFFront Immunol
January 2025
Innovation Institute for Artificial Intelligence in Medicine and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
Introduction: Though COVID-19 as a public health emergency of international concern (PHEIC) was declared to be ended by the WHO, it continues to pose a significant threat to human society. Vaccination remains one of the most effective methods for preventing COVID-19. While most of the antigenic regions are found in the receptor binding domain (RBD), the N-terminal domain (NTD) of the S protein is another crucial region for inducing neutralizing antibodies (nAbs) against COVID-19.
View Article and Find Full Text PDFJ Nippon Med Sch
January 2025
Department of Pediatrics, Nippon Medical School.
An infant was diagnosed as having X-linked agammaglobulinemia (XLA) at age 3 months and was receiving immunoglobulin replacement therapy. He developed SARS-CoV-2 infection at age 7 months and was treated with intravenous immunoglobulin, remdesivir, and dexamethasone. His respiratory symptoms improved quickly, and the infection resolved.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!