Aim: Cardiac resynchronization therapy (CRT) is a treatment for patients with end-stage heart failure. However, two-thirds of the patients are nonresponders. Evaluation of left ventricular mechanical dyssynchrony may help in finding patients who will benefit from CRT. Dyssynchrony can be evaluated by the phase analysis method in myocardial perfusion imaging (MPI) or with cardiac ultrasound. The aim of this study was to investigate the reproducibility of phase analysis parameters in MPI and echocardiographic parameters in the evaluation of left ventricular mechanical dyssynchrony. In particular, the influence of BMI on reproducibility was studied.

Methods And Results: Twenty-one patients underwent an ECG-gated MPI scan. Acquisition was repeated after the rest image. The patients were also studied twice with transthoracic echocardiography. Of MPI phase analysis parameters bandwidth, histogram SD and entropy% were highly reproducible in the pooled population: Cronbach's α 0.927-0.967 and intraclass correlation (ICC) 0.868-0.967, (P<0.001 for all). However, the reproducibility of bandwidth and SD was poorer in patients with BMI≥29 kg/m group (α 0.203 and -0.055; ICC 0.106 and -0.027, NS for both) than in those with BMI<29 kg/m (α 0.984 and 0.980; ICC 0.968 and 0.961, P<0.001 for both). In contrast, BMI had no obvious influence on the reproducibility of global longitudinal strain in echocardiography.

Conclusion: Parameters reflecting mechanical dyssynchrony were found to be well reproducible. However, this study indicates that phase analysis results may be less reproducible in patients with high BMI, whereas global longitudinal strain in echocardiography seems to be less critical for a patient's BMI.

Download full-text PDF

Source
http://dx.doi.org/10.1097/MNM.0000000000000508DOI Listing

Publication Analysis

Top Keywords

phase analysis
16
myocardial perfusion
8
perfusion imaging
8
evaluation left
8
left ventricular
8
ventricular mechanical
8
mechanical dyssynchrony
8
analysis parameters
8
patients
5
bmi influence
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!