Introduction: Intraoperative fluorescence imaging of the folate-receptor alpha (FRα) could support completeness of resection in cancer surgery. Feasibility of EC17, a FRα-targeting agent that fluoresces at 500nm, was demonstrated in a limited series of ovarian cancer patients. Our objective was to evaluate EC17 in a larger group of ovarian cancer patients. In addition, we assessed the feasibility of EC17 in patients with breast cancer.
Methods: Two-to-three hours before surgery 0.1mg/kg EC17 was intravenously administered to 12 patients undergoing surgery for ovarian cancer and to 3 patients undergoing surgery for biopsy-proven FRα-positive breast cancer. The number of lesions/positive margins detected with fluorescence and concordance between fluorescence and tumor- and FRα-status was assessed in addition to safety and pharmacokinetics.
Results: Fluorescence imaging in ovarian cancer patients allowed detection of 57 lesions of which 44 (77%) appeared malignant on histopathology. Seven out of these 44 (16%) were not detected with inspection/palpation. Histopathology demonstrated concordance between fluorescence and FRα- and tumor status. Fluorescence imaging in breast cancer patients, allowed detection of tumor-specific fluorescence signal. At the 500nm wavelength, autofluorescence of normal breast tissue was present to such extent that it interfered with tumor identification.
Conclusions: FRα is a favorable target for fluorescence-guided surgery as EC17 produced a clear fluorescent signal in ovarian and breast cancer tissue. This resulted in resection of ovarian cancer lesions that were otherwise not detected. Notwithstanding, autofluorescence caused false-positive lesions in ovarian cancer and difficulty in discriminating breast cancer-specific fluorescence from background signal. Optimization of the 500nm fluorophore, will minimize autofluorescence and further improve intraoperative tumor detection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5078003 | PMC |
http://dx.doi.org/10.18632/oncotarget.8282 | DOI Listing |
B7-H3 (CD276), a member of the B7-family of immune checkpoint proteins, has been shown to have immunological and non-immunological effects promoting tumorigenesis [1, 2] and expression correlates with poor prognosis for many solid tumors, including cervical, ovarian and breast cancers [3-6]. We recently identified a tumor-cell autochthonous tumorigenic role for dimerization of the 4Ig isoform of B7-H3 (4Ig-B7-H3) [7], where 4Ig-B7-H3 dimerization activated tumor-intrinsic cellular proliferation and tumorigenesis pathways, providing a novel opportunity for therapeutic intervention. Herein, a live cell split-luciferase complementation strategy was used to visualize 4Ig-B7-H3 homodimerization in a high-throughput small molecule screen (HTS) to identify modulators of this protein-protein interaction (PPI).
View Article and Find Full Text PDFLiposomal doxorubicin (Dox), a treatment option for recurrent ovarian cancer, often suffers from suboptimal biodistribution and efficacy, which might be addressed with precision drug delivery systems. Here, we introduce a catheter-based endoscopic probe designed for multispectral, quantitative monitoring of light-triggered drug release. This tool utilizes red-light photosensitive porphyrin-phospholipid (PoP), which is encapsulated in liposome bilayers to enhance targeted drug delivery.
View Article and Find Full Text PDFFront Immunol
December 2024
Leeds Institute of Medical Research, School of Medicine, University of Leeds, St. James University Hospital, Leeds, United Kingdom.
Background: There has been limited success of cancer immunotherapies in the treatment of ovarian cancer (OvCa) to date, largely due to the immunosuppressive tumour microenvironment (TME). Tumour-associated macrophages (TAMs) are a major component of both the primary tumour and malignant ascites, promoting tumour growth, angiogenesis, metastasis, chemotherapy resistance and immunosuppression. Differential microRNA (miRNA) profiles have been implicated in the plasticity of TAMs.
View Article and Find Full Text PDFCell Commun Signal
January 2025
School of Medicine, Southeast University, Nanjing, Jiangsu, China.
Tribbles homolog 2 (TRIB2), a pseudoserine/threonine kinase, is a member of the TRIB family. TRIB2 primarily regulates cell proliferation through its scaffold or adaptor effect on promoting the degradation of target proteins by E3 ligase-dependent ubiquitination and regulating mitogen-activated protein kinase (MAPK) and protein kinase B (AKT) signaling pathways. TRIB2 is not only involved in the physiological proliferation of cells (granulosa cells, myoblasts, naive T cells, and thymocytes) during normal development but also in the pathological proliferation of vascular smooth muscle cells and a variety of cancer cells (lung cancer cells, liver cancer cells, leukemia cells, pancreatic cancer cells, gastric cancer cells, prostate cancer cells, thyroid cancer cells, cervical cancer cells, melanoma cells, colorectal cancer cells, ovarian cancer cells and osteosarcoma cells) under disease conditions.
View Article and Find Full Text PDFBMC Med
January 2025
Department of Gynaecology and Obstetrics, University and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany.
Ovarian cancer remains the most lethal gynecological malignancy. Despite the approval of promising targeted therapy such as bevacizumab and PARP inhibitors, 5-year survival has not improved significantly. Thus, there is an urgent need for new therapeutics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!