Significant efforts are being made to develop more practical and versatile approaches for the preconcentration and purification of complex chemical samples. Inspired by the naturally occurring enrichment of organic compounds in sea aerosols, in this study we demonstrate the potential of induced bubble bursting as an approach for the preconcentration of organic solutes in various aqueous solutions. Apart from the preconcentration of organics, notable decrease in the concentration of metal salt components was discovered for the first time. On the basis of a series of model experiments, the phenomenon has been attributed to intermolecular competition at the surface interface of rising bubbles. Overall, our results indicate the high versatility and simplicity of the bubble bursting approach for the simultaneous preconcentration and desalting of organic solutes in aqueous solutions for mass spectrometry, chromatography, optical detection, and other fields of analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.6b00582 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Department of Chemistry, Utkal University, Bhubaneswar, 751 004, Odisha, India.
This research highlights a sustainable approach for the design and synthesis of a magnetic nickel ferrite (NiFeO) catalyst reutilizing industrial waste, specifically iron ore tailing and Raney nickel catalyst processing waste, by simple co-precipitation method. Transforming waste materials into high-performance catalysts, this study aligns with the principles of a circular economy, addressing both environmental waste and pollution. Structural characterization by X-ray diffraction (XRD) and microscopic (FESEM and TEM) revealed the formation of well crystalline nano ferrite with NiFeO nanoparticles with cubic spinel structure.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Materials Science& Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
Lanthanide-doped upconversion luminescent nanoparticles (UCNPs) have garnered extensive attention due to their notable anti-Stokes shifts and superior photostability. Notably, Ho-based UCNPs present a complex energy level configuration, which poses challenges in augmenting their luminescence efficiency. Herein, a rational design strategy was used to enhance the upconversion luminescence intensity of Ho ions by improving the photon absorption ability and energy utilization efficiency.
View Article and Find Full Text PDFEnviron Sci Process Impacts
January 2025
School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
Trivalent chromium (Cr) is a heavy metal widely present in tannery wastewater, and organic ligands represented by gallic acid (GA) have significant effects on the environmental behavior of Cr. This study explored the binding process of Cr with GA through the integration of ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR), and fluorescence spectroscopy coupled with two-dimensional correlation analyses (2DCOS). UV-vis results showed that the average molecular weight of the solutions gradually increased with the addition of Cr ions.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Peking University, College of Chemistry and Molecular Engineering, Chengfu Road No.292, 100871, Beijing, CHINA.
Organic-inorganic hybrid perovskites have demonstrated great potential for flexible optoelectronic devices due to their superior optoelectronic properties and structural flexibility. However, mechanical deformation-induced cracks at the buried interface and delamination from the substrate severely constrain the optoelectronic performance and device lifespan. Here, we design a two-site bonding strategy aiming to reinforce the mechanical stability of the SnO2/perovskite interface and perovskite layer using a multifunctional organic salt, 4-(trifluoromethoxy)phenylhydrazine hydrochloride (TPH).
View Article and Find Full Text PDFChemMedChem
January 2025
Central University of Haryana, Chemistry, Academic Block-1, Jant-Pali, 123 031, Mahendergarh, INDIA.
Multicomponent reactions have long been recognized as some of the most versatile tools in organic chemistry, with extensive applications in biomedical science and the pharmaceutical industry. In this study, we explored the potential of the Passerini reaction by designing and synthesizing new low molecular mass gelators that can serve as novel formulations for prolonged anesthesia. These gelators address critical issues like poor solubility, low bioavailability, and short plasma half-life, all of which hinder therapeutic efficacy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!