Chloroplasts originated about three billion years ago by endosymbiosis of an ancestor of today's cyanobacteria with a mitochondria-containing host cell. During evolution chloroplasts of higher plants established as the site for photosynthesis and thus became the basis for all life dependent on oxygen and carbohydrate supply. To fulfill this task, plastid organelles are loaded with the transition metals iron, copper, and manganese, which due to their redox properties are essential for photosynthetic electron transport. In consequence, chloroplasts for example represent the iron-richest system in plant cells. However, improvement of oxygenic photosynthesis in turn required adaptation of metal transport and homeostasis since metal-catalyzed generation of reactive oxygen species (ROS) causes oxidative damage. This is most acute in chloroplasts, where radicals and transition metals are side by side and ROS-production is a usual feature of photosynthetic electron transport. Thus, on the one hand when bound by proteins, chloroplast-intrinsic metals are a prerequisite for photoautotrophic life, but on the other hand become toxic when present in their highly reactive, radical generating, free ionic forms. In consequence, transport, storage and cofactor-assembly of metal ions in plastids have to be tightly controlled and are crucial throughout plant growth and development. In the recent years, proteins for iron transport have been isolated from chloroplast envelope membranes. Here, we discuss their putative functions and impact on cellular metal homeostasis as well as photosynthetic performance and plant metabolism. We further consider the potential of proteomic analyses to identify new players in the field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4780311 | PMC |
http://dx.doi.org/10.3389/fpls.2016.00178 | DOI Listing |
Proteomes
January 2025
Instituto de Matemática e Estatística, Departamento de Ciência da Computação, Universidade de São Paulo, Rua do Matão 1010, São Paulo 05508-090, SP, Brazil.
The tumor suppressor p53, in its wild-type form, plays a central role in cellular homeostasis by regulating senescence, apoptosis, and autophagy within the DNA damage response (DDR). Recent findings suggest that wild-type p53 also governs ferroptosis, an iron-dependent cell death process driven by lipid peroxidation. Post-translational modifications of p53 generate proteoforms that significantly enhance its functional diversity in regulating these mechanisms.
View Article and Find Full Text PDFHum Brain Mapp
February 2025
Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, New York, USA.
Iron in the brain is essential to neurodevelopmental processes, as it supports neural functions, including processes of oxygen delivery, electron transport, and enzymatic activity. However, the development of brain iron before birth is scarcely understood. By estimating R2* (1/T2*) relaxometry from a sizable sample of fetal multiecho echo-planar imaging (EPI) scans, which is the standard sequence for functional magnetic resonance imaging (fMRI), across gestation, this study investigates age and sex-related changes in iron, across regions and tissue segments.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
State Key Laboratory of Petroleum Pollution Control, Beijing 102206, PR China; CNPC Research Institute of Safety and Environmental Technology, Beijing 102206, PR China.
In this study, hollow micron zero-valent iron (H-mZVI) was prepared using the ethylenediamine liquid phase reduction method. The microstructures were characterized by SEM, XRD, BET and FTIR. The results showed that H-mZVI possessed a spherical hollow structure with a particle size of approximately 1 μm.
View Article and Find Full Text PDFLuminescence
January 2025
School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, China.
Tetrachlorobisphenol A (TCBPA) is a kind of fire retardant extensively used in our life, but it can accumulate in organisms and potentially have toxic effects. Transferrin (TF) is a glycoprotein predominantly present in the blood plasma, serving as an essential mediator for the transportation of iron and other small molecules. In our study, various techniques including multi-spectroscopic and molecular docking were employed to examine the interaction between TCBPA and TF.
View Article and Find Full Text PDFLimnology (Tokyo)
July 2024
Department of Geological and Environmental Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 84105 Beer Sheva, Israel.
Unlabelled: The redox conditions in the littoral limnic sediments may be affected by the penetration of plant roots which provide channels for oxygen transport into the sediment while decomposition of the dead roots results in consumption of oxygen. The goal of this work was to study the impact of environmental parameters including penetration of roots of L. into the sediments on cycling of the redox-sensitive elements in Lake Kinneret.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!