Pseudomonas syringae pv. porri, the causative agent of bacterial blight in leek (Allium porrum), is increasingly frequent causing problems in leek cultivation. Because of the current lack of control measures, novel bacteriophages were isolated to control this pathogen using phage therapy. Five novel phages were isolated from infected fields in Flanders (vB_PsyM_KIL1, vB_PsyM_KIL2, vB_PsyM_KIL3, vB_PsyM_KIL4, and vB_PsyM_KIL5), and were complemented with one selected host range mutant phage (vB_PsyM_KIL3b). Genome analysis of the phages revealed genome sizes between 90 and 94 kb and an average GC-content of 44.8%. Phylogenomic networking classified them into a novel clade, named the "KIL-like viruses," related to the Felixounalikevirus genus, together with phage phiPsa374 from P. syringae pv. actinidiae. In vitro characterization demonstrated the stability and lytic potential of these phages. Host range analysis confirmed heterogeneity within P. syringae pv. porri, leading to the development of a phage cocktail with a range that covers the entire set of 41 strains tested. Specific bio-assays demonstrated the in planta efficacy of phages vB_PsyM_KIL1, vB_PsyM_KIL2, vB_PsyM_KIL3, and vB_PsyM_KIL3b. In addition, two parallel field trial experiments on three locations using a phage cocktail of the six phages showed variable results. In one trial, symptom development was attenuated. These data suggest some potential for phage therapy in controlling bacterial blight of leek, pending optimization of formulation and application methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4791379PMC
http://dx.doi.org/10.3389/fmicb.2016.00279DOI Listing

Publication Analysis

Top Keywords

bacterial blight
12
blight leek
12
syringae porri
12
novel bacteriophages
8
pseudomonas syringae
8
phage therapy
8
vb_psym_kil1 vb_psym_kil2
8
vb_psym_kil2 vb_psym_kil3
8
host range
8
phage cocktail
8

Similar Publications

Functional Characterization of , a Gene Coding an Aspartic Acid Protease in .

J Fungi (Basel)

December 2024

Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China.

Aspartic proteases (APs), hydrolases with aspartic acid residues as catalytic active sites, are closely associated with processes such as plant growth and development and fungal and bacterial pathogenesis. is the dominant pathogenic fungus that causes Fusarium head blight (FHB) in wheat. However, the relationship of APs to the growth, development, and pathogenesis of .

View Article and Find Full Text PDF

Background: Rice is the main food crop for much of the population in China. Therefore, selecting and breeding new disease resistance and drought tolerance in rice is essential to ensure national food security. The utilization of heterosis has significantly enhanced rice productivity, yet many of the molecular mechanisms underlying this phenomenon remain largely unexplored.

View Article and Find Full Text PDF

An evaluation of pruning programs to manage shoot blight, caused by the bacterium .

Plant Dis

December 2024

Cornell University, Plant Pathology-Geneva, 630 West North Street, 221 Barton Lab, Geneva, New York, United States, 14456;

Fire blight is an economically devastating disease caused by the bacterium . Infections lead can shoot blight and, when unmanaged, become systemic and can quickly cause tree death and spread through an orchard via active infections sites producing bacterial ooze. With climate change, increasingly popular high-density training systems, and the susceptibility of many consumers desired apple cultivars, shoot blight management has become exceptionally challenging despite the diverse management tactics available.

View Article and Find Full Text PDF

First Report of Causing Bacterial Blight on Glossy Abelia.

Plant Dis

December 2024

Clemson University - EREC, Plant and Environmental Sciences, 64 Research Road, Blackville, South Carolina, United States, 29817;

Glossy abelia (Abelia × grandiflora) is an evergreen ornamental shrub used in landscaping globally. From Jun. 2023 to Feb.

View Article and Find Full Text PDF
Article Synopsis
  • Bacterial blight in pomegranate, caused by Xanthomonas citri pv. punicae (Xcp), is a major issue leading to significant economic losses, with current management primarily relying on antibiotics and copper-based treatments.
  • The excessive use of antibiotics has led to antibiotic resistance, prompting research into eco-friendly alternatives like native endophytes, which are beneficial bacteria isolated from pomegranate plants that can inhibit Xcp growth through the production of antimicrobial volatiles.
  • Field trials showed that using these endophytes reduced the disease index by 47-68%, outperforming traditional chemical treatments, making them promising candidates for sustainable bacterial blight management in pomegranate cultivation.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!