Introduction: Bacterial cell characteristics change significantly during differentiation between planktonic and biofilm states. While established methods exist to detect and identify transcriptional and proteomic changes, metabolic fluctuations that distinguish these developmental stages have been less amenable to investigation.
Objectives: The objectives of the study were to develop a robust reproducible sample preparation methodology for high throughput biofilm analysis and to determine differences between Staphylococcus aureus in planktonic and biofilm states.
Methods: The method uses bead beating in a chloroform/methanol/water extraction solvent to both disrupt cells and quench metabolism. Verification of the method was performed using liquid-chromatography-mass spectrometry. Raw mass-spectrometry data was analysed using an in-house bioinformatics pipe-line incorporating XCMS, MzMatch and in-house R-scripts, with identifications matched to internal standards and metabolite data-base entries.
Results: We have demonstrated a novel mechanical bead beating method that has been optimised for the extraction of the metabolome from cells of a clinical Staphylococcus aureus strain existing in a planktonic or biofilm state. This high-throughput method is fast and reproducible, allowing for direct comparison between different bacterial growth states. Significant changes in arginine biosynthesis were identified between the two cell populations.
Conclusions: The method described herein represents a valuable tool in studying microbial biochemistry at a molecular level. While the methodology is generally applicable to the lysis and extraction of metabolites from Gram positive bacteria, it is particularly applicable to biofilms. Bacteria that exist as a biofilm are shown to be highly distinct metabolically from their 'free living' counterparts, thus highlighting the need to study microbes in different growth states. Metabolomics can successfully distinguish between a planktonic and biofilm growth state. Importantly, this study design, incorporating metabolomics, could be optimised for studying the effects of antimicrobials and drug modes of action, potentially providing explanations and mechanisms of antibiotic resistance and to help devise new antimicrobials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4783440 | PMC |
http://dx.doi.org/10.1007/s11306-016-1002-0 | DOI Listing |
BMC Oral Health
January 2025
Academy of Medical Engineering and Transform Medicine, Tianjin University, No.92 Weijin Road, Nankai District, Tianjin, 300072, China.
Background: Streptococcus mutans (S. mutans) contributes to caries. The biofilm formed by S.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Department of Clinical Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Bovine mastitis is the most widespread disease that causes financial loss in the dairy industry. Staphylococcus aureus is a well-researched multidrug-resistant opportunistic bacterium that is frequently linked to subclinical mastitis and causes significant economic losses. A further problem in the management of S.
View Article and Find Full Text PDFNat Chem Biol
January 2025
Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China.
Colony expansion is important for establishing territories. It is unclear to what extent bacteria can maintain colony expansion under nutrient limitation. Here, we found that Escherichia coli biofilms could maintain steady expansion for an extended period of time under severe phosphorus limitation.
View Article and Find Full Text PDFBiofouling
January 2025
Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo, Sonora, México.
This study hypothesizes that eugenol, due to its structural properties, can inhibit glucosyltransferase activity, thereby reducing polysaccharide synthesis in Typhimurium biofilms. It was found that eugenol exhibited minimum inhibitory and bactericidal concentrations of 0.6 mg mL and 0.
View Article and Find Full Text PDFJ Mycol Med
December 2024
Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, Centre for Interdisciplinary Research, DY Patil Education Society (Deemed to be University), Kolhapur, Maharashtra, 416003, India. Electronic address:
Background: The increasing resistance of Candida albicans biofilms underscores the urgent need for effective antifungals. This study evaluated the efficacy of zingerone and elucidated its mode of action against C. albicans ATCC 90028 and clinical isolate C1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!