Unlabelled: The genetic correction of induced pluripotent stem cells (iPSCs) induced from somatic cells of patients with sensorineural hearing loss (caused by hereditary factors) is a promising method for its treatment. The correction of gene mutations in iPSCs could restore the normal function of cells and provide a rich source of cells for transplantation. In the present study, iPSCs were generated from a deaf patient with compound heterozygous MYO7A mutations (c.1184G>A and c.4118C>T; P-iPSCs), the asymptomatic father of the patient (MYO7A c.1184G>A mutation; CF-iPSCs), and a normal donor (MYO7A(WT/WT); C-iPSCs). One of MYO7A mutation sites (c.4118C>T) in the P-iPSCs was corrected using CRISPR/Cas9. The corrected iPSCs (CP-iPSCs) retained cell pluripotency and normal karyotypes. Hair cell-like cells induced from CP-iPSCs showed restored organization of stereocilia-like protrusions; moreover, the electrophysiological function of these cells was similar to that of cells induced from C-iPSCs and CF-iPSCs. These results might facilitate the development of iPSC-based gene therapy for genetic disorders.
Significance: Induced pluripotent stem cells (iPSCs) were generated from a deaf patient with compound heterozygous MYO7A mutations (c.1184G>A and c.4118C>T). One of the MYO7A mutation sites (c.4118C>T) in the iPSCs was corrected using CRISPR/Cas9. The genetic correction of MYO7A mutation resulted in morphologic and functional recovery of hair cell-like cells derived from iPSCs. These findings confirm the hypothesis that MYO7A plays an important role in the assembly of stereocilia into stereociliary bundles. Thus, the present study might provide further insight into the pathogenesis of sensorineural hearing loss and facilitate the development of therapeutic strategies against monogenic disease through the genetic repair of patient-specific iPSCs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4835250 | PMC |
http://dx.doi.org/10.5966/sctm.2015-0252 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
School of Biosciences, University of Sheffield, Sheffield S10 2TN, United Kingdom.
Myosin-VIIA (MYO7A) is an unconventional myosin responsible for syndromic (Usher 1B) or nonsyndromic forms of deafness in humans when mutated. In the cochlea, MYO7A is expressed in hair cells, where it is believed to act as the motor protein tensioning the mechanoelectrical transducer (MET) channels, thus setting their resting open probability (). However, direct evidence for this unique role for an unconventional myosin in mature hair cells is lacking.
View Article and Find Full Text PDFHeliyon
October 2024
Department of Medical Genetics, the First People's Hospital of Yunnan Province, Kunming, Yunnan, China.
Hearing loss is a common disease. More than 100 genes have been reported to be associated with hereditary hearing loss. However, the distribution of these genes and their variants across diverse populations remains unclear.
View Article and Find Full Text PDFJ Mol Neurosci
October 2024
Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, 12311, Egypt.
Hearing loss (HL) is one of the most common health problems worldwide. Autosomal recessive non-syndromic sensorineural hearing loss (ARNSHL) represents a large portion of congenital hereditary HL. Our study was conducted on 13 patients from 13 unrelated families.
View Article and Find Full Text PDFInt J Audiol
October 2024
Department of Clinical Genetics, Oulu University Hospital, Oulu, Finland.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!