In eukaryotes, P-type adenosine triphosphatases (ATPases) generate the plasma membrane potential and drive secondary transport systems; however, despite their importance, their regulation remains poorly understood. We monitored at the single-molecule level the activity of the prototypic proton-pumping P-type ATPase Arabidopsis thaliana isoform 2 (AHA2). Our measurements, combined with a physical nonequilibrium model of vesicle acidification, revealed that pumping is stochastically interrupted by long-lived (~100 seconds) inactive or leaky states. Allosteric regulation by pH gradients modulated the switch between these states but not the pumping or leakage rates. The autoinhibitory regulatory domain of AHA2 reduced the intrinsic pumping rates but increased the dwell time in the active pumping state. We anticipate that similar functional dynamics underlie the operation and regulation of many other active transporters.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5023152 | PMC |
http://dx.doi.org/10.1126/science.aad6429 | DOI Listing |
Genes Brain Behav
February 2025
Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, Massachusetts, USA.
Opioid use disorder is heritable, yet its genetic etiology is largely unknown. C57BL/6J and C57BL/6NJ mouse substrains exhibit phenotypic diversity in the context of limited genetic diversity which together can facilitate genetic discovery. Here, we found C57BL/6NJ mice were less sensitive to oxycodone (OXY)-induced locomotor activation versus C57BL/6J mice in a conditioned place preference paradigm.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
An endoplasmic reticulum-localized Cu transporter, PhHMA5II1, interacts with copper chaperones and plays an important role in Cu detoxification in petunia. Copper (Cu) is an essential element for plant growth but toxic when present in excess. In this study we present the functional characterization of a petunia (Petunia hybrida) P-type heavy-metal ATPases (HMAs), PhHMA5II1.
View Article and Find Full Text PDFCephalalgia
January 2025
Department of Biomedicine, Health Aarhus University, Aarhus, Denmark.
Background: Familial hemiplegic migraine (FHM) types 1-3 are associated with protein-altering genetic variants in , and , respectively. These genes have also been linked to epilepsy. Previous studies primarily focused on phenotypes, examining genetic variants in individuals with characteristic FHM symptoms.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Microbiology and Immunology, Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA 19129.
Among new antimalarials discovered over the past decade are multiple chemical scaffolds that target P-type ATPase (ATP4). This essential protein is a Na pump responsible for the maintenance of Na homeostasis. ATP4 belongs to the type two-dimensional (2D) subfamily of P-type ATPases, for which no structures have been determined.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, RJ, Brazil.
The Na, K-ATPase generates an asymmetric ion gradient that supports multiple cellular functions, including the control of cellular volume, neuronal excitability, secondary ionic transport, and the movement of molecules like amino acids and glucose. The intracellular and extracellular levels of Na and K ions are the classical local regulators of the enzyme's activity. Additionally, the regulation of Na, K-ATPase is a complex process that occurs at multiple levels, encompassing its total cellular content, subcellular distribution, and intrinsic activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!