Venenum Bufonis induces rat neuroinflammation by activiating NF-κB pathway and attenuation of BDNF.

J Ethnopharmacol

College of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 210009, China; Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road 501, Shanghai 201203, China. Electronic address:

Published: June 2016

Ethnopharmacological Relevance: Venenum Bufonis (VB), also called toad venom, has been widely used in clinic as a cardiotonic, anohyne and antineoplastic agents both in China and other Asian countries. However, its neurotoxicity and cardiotoxicity limit its wide clinical application. Compared with extensive attention attracted with cardiotoxicity, the toxic effect of VB on Central Nervous System (CNS) is much less studied.

Aim Of The Research: This study was performed to examine the neurotoxicity caused by VB on Sprague Dawley (SD) rats, then to clarify the mechanism in vivo by investigating its action on the neuroinflammation which possibly attributed to the activation of nuclear factor κB (NF-κB) pathway and the attenuation of brain-derived neurotrophic factor (BDNF).

Materials And Methods: Rats administrated with 0.5% carboxymethyl cellulose sodium salt (CMC-Na) aqueous solution and VB (100mg/kg, 200mg/kg and 400mg/kg) were sacrificed at 2h, 4h, 6h, 8h, 24h and 48h. The brain level of neurotransmitters and their corresponding receptors, pro-inflammatory cytokines, BDNF/TrkB and NF-κB pathway-related proteins were examined, respectively.

Results: VB administration induced severe neurologic damage and neuroinflammation, as indicated by the disordered 5-hydroxytryptamine (5-HT), dopamine (DA) and their corresponding receptors, together with the over production of inflammatory cytokines including interleukin-6 (IL-6), interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). VB also notably promoted the expression of p-NF-κBp65, p-IκBα, p-IKKα and p-IKKβ and down-regulated the expression of BDNF and TrkB.

Conclusion: This study demonstrates that VB triggers neurotoxicity which probably is induced by neuroinflammation via activating of NF-κB pathway and attenuating the expression of BDNF.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jep.2016.03.049DOI Listing

Publication Analysis

Top Keywords

nf-κb pathway
12
venenum bufonis
8
pathway attenuation
8
corresponding receptors
8
expression bdnf
8
bufonis induces
4
induces rat
4
neuroinflammation
4
rat neuroinflammation
4
neuroinflammation activiating
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!