A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Controlled release of a hydrophilic drug from coaxially electrospun polycaprolactone nanofibers. | LitMetric

Controlled release of a hydrophilic drug from coaxially electrospun polycaprolactone nanofibers.

Int J Pharm

Plasma Aided Biomedical Research Group (pabmed), Department of Biomedical Engineering, Faculty of Engineering, TOBB University of Economics and Technology, Ankara, Turkey. Electronic address:

Published: May 2016

A recent approach for controlled release of drugs is the production of core-shell fibers via modified coaxial electrospinning where a shell solution which is not fully electrospinnable can be used. In this study, this technique was used for achieving the controlled release of a model hydrophilic drug (ampicillin) which is known to have a low compatibility with the polymer (polycaprolactone). A partially electrospinnable shell fluid (4% (w/v) polycaprolactone (PCL) solution) and a fully electrospinnable core fluid (10% (w/v) PCL, 2% (w/v) ampicillin solution) were used in order to create ampicillin-loaded PCL nanofibers covered by a PCL shield. Scanning electron microscopy and optical microscopy images proved that the membranes have core-shell structured nanofibers. Fourier transform infrared spectroscopy demonstrated that some compatibility might be present between ampicillin and PCL. Finally, drug release studies showed that the drug release kinetics of core-shell products is closer to zero-order kinetics while the drug release kinetics of single electrospinning of the core resulted with serious burst release. Together, these imply that the application area of modified coaxial electrospinning in controlled release could be expanded to polymers and drugs with low compatibility.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2016.03.032DOI Listing

Publication Analysis

Top Keywords

controlled release
16
drug release
12
hydrophilic drug
8
modified coaxial
8
coaxial electrospinning
8
solution fully
8
fully electrospinnable
8
low compatibility
8
release kinetics
8
release
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!