Although PLA is much more expensive than polyolefins, such as PP and PE, there is a great interest to propose PLA based material as alternative films for food packaging being PLA derivable from natural source, compostable and biodegradable. For this purpose the research has the task to investigate and propose PLA materials with enhanced properties to be effectively and efficiently alternative to polyolefin films for food packaging application. In this contribution, biocomposite films of PLA with 1, 3 and 5wt% of ZnO have been investigated to determine mechanical, barrier and antimicrobial (against Escherichia coli) properties. It is found that the biocomposite films are characterized by a good dispersion of the ZnO particles in PLA matrix, although no previous treatment was performed on ZnO particles, such as silanization, to decrease its incompatibility with the polymer. The biocomposite films have shown good mechanical properties, decrease of permeability to CO2 and O2, and only a slight increase to water vapour. Particularly important is that, for the biocomposite with 5wt% of ZnO, the % Reduction for E. Coli test reached the value of 99.99 already after 24h.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2016.03.039 | DOI Listing |
Int J Food Sci
January 2025
Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, Bangi, Malaysia.
Two plasticizers with distinct properties are carefully studied in this research for their suitability in creating biocomposite edible film products. The study uncovers films' physical, tensile, and biodegradability attributes, using snakehead gelatin and ĸ-carrageenan in different concentrations, with sorbitol or glycerol as plasticizers. The biomaterials of the edible film consist of snakehead gelatin () 2% (/); ĸ-carrageenan at concentrations of 1%, 1.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemistry, Faculty of Science, Gonbad Kavous University, Gonbad Kavous, Iran.
A bright future lies ahead for the application of natural biocomposites in the food industry. In this research, edible biocomposite films were created using sodium caseinate (SC)-gum tragacanth (GT) and incorporating carum carvi seed essential oil (EO) as a nanoemulsion. Different ratios of oil were used as variables.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry 605014, India. Electronic address:
The study aims to evaluate how bacteriocin and extracellular polymeric substances (EPS) can influence the development of active packaging for food. The components might enhance the performance of packaging materials in terms of their physicochemical properties and their effectiveness in preserving food. Bacteriocin and EPS exert a significant effect in blocking the transmission of UV and visible light radiations.
View Article and Find Full Text PDFFoods
January 2025
Center of Excellence Polymer Processing, Faculty of Engineering, Dunarea de Jos University of Galați, Domnească Street, No. 111, 800201 Galați, Romania.
Electrospinning is a versatile technique for obtaining nano/micro fibers which are able to significantly change the active properties of composite materials and bring in new dimensions to agri-food applications. Composite bio-based packaging materials obtained from whey proteins, functionalized with thyme essential oil (TEO) and reinforced by electrospun polylactic acid (PLA) fibers, represent a promising solution for developing new active food packaging using environmentally friendly materials. The aim of this study is to obtain and characterize one-side-active composite films covered with a PLA fiber mat: (i) WF/G1, WF/G2, and WF/G3 resulting from electrospinning with one needle at different electrospinning times of 90, 150, and 210 min, respectively, and (ii) WF/G4 obtained with two face-to-face needles after 210 min of electrospinning.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Wood Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
This study compared the use of cellulose nanofibrils (CNF) and lignocellulose nanofibrils (LCNF) in different concentrations to reinforce the poly(vinyl alcohol) (PVA) matrix. Both nanofillers significantly improved the elastic modulus and tensile strength of PVA biocomposite films. The optimum concentration of CNF and LCNF was 6% relative to PVA, which improved the tensile strength of the final PVA biocomposite with CNF and LCNF by 53% and 39%, respectively, compared to the neat PVA film.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!