Even with the use of double-emulsion technique for preparation, the hydrophobic nature of solid lipid nanoparticles (SLNs) limits their encapsulation efficiency (EE%) for peptides such as insulin. In this study, we hypothesize that inclusion of Methocel into SLN to form Methocel-lipid hybrid nanocarriers (MLNs) will significantly enhance insulin EE% without compromising the various characteristics of SLN favorable for oral drug delivery. Our data show that incorporation of 2% wt/wt of Methocel A15C had doubled insulin EE% (around 40%) versus conventional SLN prepared using standard double emulsion technique. MLN significantly protected the entrapped insulin against chymotrypsin degradation at gastrointestinal pH. Using intestinal epithelial cells Caco2 as a model, it was shown that MLN could be extensively taken up by Caco2 cells while demonstrating low cytotoxicity. The results indicate that MLN have preserved the key advantages of SLN (biocompatibility, low cytotoxicity, good drug protection, and good interaction with cells) while overcoming their key limitation for efficient peptide entrapment. Based on this, MLN may serve as a promising nanocarrier for oral delivery of peptides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.xphs.2016.02.018 | DOI Listing |
J Pharm Sci
May 2016
Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania 19140. Electronic address:
Even with the use of double-emulsion technique for preparation, the hydrophobic nature of solid lipid nanoparticles (SLNs) limits their encapsulation efficiency (EE%) for peptides such as insulin. In this study, we hypothesize that inclusion of Methocel into SLN to form Methocel-lipid hybrid nanocarriers (MLNs) will significantly enhance insulin EE% without compromising the various characteristics of SLN favorable for oral drug delivery. Our data show that incorporation of 2% wt/wt of Methocel A15C had doubled insulin EE% (around 40%) versus conventional SLN prepared using standard double emulsion technique.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!