AI Article Synopsis

  • The research tested how ryegrass and arbuscular mycorrhizal treatments affect growth and cadmium (Cd) absorption in two tomato varieties, leading to notable increases in plant dry weights based on the treatments used.
  • The study found that soil health improved with treatments, as indicated by higher microbial counts and enzyme activities, with differences observed between the two tomato varieties.
  • The presence of treatments helped lower cadmium concentrations in various tomato parts, with "Luobeiqi" showing less accumulation of Cd compared to "Defu mm-8."

Article Abstract

Field trial was carried out to investigate the effects of ryegrass and arbuscular mycorrhizal single or compound treatment to two varieties of tomato ("Defu mm-8" and "Luobeiqi") on the plant growth, concentrations and accumulations of Cd as well as the impact on microorganisms, enzyme activities, pH and Cd forms in soil when exposed to Cd (5.943 mg · kg⁻¹). The results showed that dry weights of fruit, root, stem, leaf and plant significantly increased by single or compound treatment of ryegrass and arbuscular mycorrhizal by 14.1%-38.4% and 4.2%-18.3%, 20.9%-31.5% and 8.4%-10.3%, 13.0%-16.8% and 3.0%-9.5%, 10.7%- 16.8% and 2.7%-7.6%, 14.3%-36.6% and 4.5%-16.8%, respectively. The amounts of bacteria, fungi, actinomycetes of soil and the activities of urease, invertase, acid phosphatase, catalase in soil were increased by single or compound treatment of ryegrass and arbuscular mycorrhizal, and the soil microorganism amounts and enzyme activities significantly differed between the two varieties of tomato and treatments (P < 0.05). Soil pH was increased by single or compound treatment of ryegrass and arbuscular mycorrhizal, while the concentrations of EXC-Cd, CAB-Cd, Fe-Mn-Cd and total Cd in soil were decreased, and the total Cd content was decreased by 16.9%-27.8%. Cadmium concentrations in fruit, leaf, stem and root of both varieties were significantly decreased by 6.9%-40.9%, 5.7%-40.1%, 4.6%-34.7% and 9.8%-42.4%, respectively. Cadmium accumulations in tomato were in order of leaf > stem > root > fruit. Comparing the two tomato varieties, Cd concentrations and Cd accumulations in fruit and plant were in order of "Luobeiqi" < "Defu mm-8" in the presence or absence of single or compound treatment of ryegrass and arbuscular mycorrhizal.

Download full-text PDF

Source

Publication Analysis

Top Keywords

ryegrass arbuscular
24
arbuscular mycorrhizal
24
single compound
20
compound treatment
20
treatment ryegrass
16
increased single
12
varieties tomato
8
"defu mm-8"
8
concentrations accumulations
8
enzyme activities
8

Similar Publications

Rhizosphere microorganisms are crucial for enhancing plant stress resistance. Current studies have shown that Arbuscular mycorrhizal fungi (AMF) can facilitate vegetation recovery in heavy metal-contaminated soils through interactions with rhizosphere microbiota. However, the mechanisms by which AMF influences rhizosphere microbiota and plant growth under cadmium (Cd) stress remain unclear.

View Article and Find Full Text PDF

Arbuscular mycorrhizal fungi and exogenous Ca application synergistically enhance salt and alkali resistance in perennial ryegrass through diverse adaptive strategies.

Microbiol Res

December 2024

State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China. Electronic address:

The challenge of soil salinization and alkalization, with its significant impact on crop productivity, has raised growing concerns with global population growth and enhanced environmental degradation. Although arbuscular mycorrhizal fungi (AMF) and calcium ions (Ca) are known to enhance plant resistance to stress, their combined effects on perennial ryegrass' tolerance to salt and alkali stress and the underlying mechanisms remain poorly understood. This study aimed to elucidate the roles of Arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis and exogenous Ca application in molecular and physiological responses to salt-alkali stress.

View Article and Find Full Text PDF

Mycorrhizal and non-mycorrhizal perennial ryegrass roots exhibit differential regulation of lipid and Ca signaling pathways in response to low and high temperature stresses.

Plant Physiol Biochem

November 2024

State Key Laboratory of Conservation and Utilization of Subtropical Agro- Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China. Electronic address:

Lipids and Ca are involved as intermediate messengers in temperature-sensing signaling pathways. Arbuscular mycorrhizal (AM) symbiosis is a mutualistic symbiosis between fungi and terrestrial plants that helps host plants cope with adverse environmental conditions. Nonetheless, the regulatory mechanisms of lipid- and Ca-mediated signaling pathways in mycorrhizal plants under cold and heat stress have not been determined.

View Article and Find Full Text PDF

Improving the cultivation mode and technology for traditional Chinese medicine has become important for its sustainable development. Monoculture enhances plant diseases, which decreases yield and quality. Intercropping is an effective measure to counterbalance that negative effect.

View Article and Find Full Text PDF

Negative plant-soil feedback (PSF) arises when localized accumulations of pathogens reduce the growth of conspecifics, whereas positive PSF can occur due to the emergence of mutualists. Biochar, a carbon-rich material produced by the pyrolysis of organic matter, has been shown to modulate soil microbial communities by altering their abundance, diversity, and activity. For this reason, to assess the long-term impact of biochar on soil microbiome dynamics and subsequent plant performance, we conducted a PSF greenhouse experiment using field soil conditioned over 10 years with (L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!