Three species of phytoplankton, Rhodomonas sp., Phaeodactylum tricornutum Bohlin, and Isochrysis galbana Parke, were cultivated in semicontinuous culture to analyze the response of carbon (C):nitrogen (N):phosphorus (P) stoichiometry to the interactive effect of five N:P supply ratios and four growth rates (dilution rates). The relationship between cellular N and P quotas and growth rates fits well to both the Droop and Ågren's functions for all species. We observed excess uptake of both N and P in the three species. N:P biomass ratios showed a significant positive relationship with N:P supply ratios across the entire range of growth rates, and N:P biomass ratios converged to an intermediate value independent of N:P supply ratios at higher growth rates. The effect of growth rates on N:P biomass ratios was positive at lower N:P supply ratios, but negative at higher N:P supply ratios for both Rhodomonas sp. and I. galbana, while for P. tricornutum this effect was negative at all N:P supply ratios. A significant interactive effect of N:P supply ratios and growth rates on N:P biomass ratios was found in both Rhodomonas sp. and P. tricornutum, but not in I. galbana. Our results suggest that Ågren's functions may explain the underlying biochemical principle for the Droop model. The parameters in the Droop and Ågren's functions can be useful indications of algal succession in the phytoplankton community in changing oceans.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1529-8817.2012.01163.xDOI Listing

Publication Analysis

Top Keywords

supply ratios
32
growth rates
24
biomass ratios
16
ratios
12
ratios growth
12
Ågren's functions
12
rates biomass
12
supply
8
three species
8
interactive supply
8

Similar Publications

Objectives: To assess the effect of occlusion and implant number/position on stress distribution in Kennedy Class II implant-assisted removable partial denture (IARPD).

Materials And Methods: IARPDs were designed in six models: with one implant (bone level with a platform of 4 mm and length of 10 mm) at the site of (I) canine, (II) between first and second premolars, (III) first molar, (IV) second molar, or two implants at the sites of (V) canine-first molar, and (VI) canine-second molar. A conventional RPD served as control.

View Article and Find Full Text PDF

Deciphering the sources of variability in drug responses requires to understand the processes modulating drug pharmacokinetics. However, pharmacological research suffers from poor reproducibility across clinical, animal, and experimental models. Predictivity can be improved by using Organs-on-Chips, which are more physiological, human-oriented, micro-engineered devices that include microfluidics.

View Article and Find Full Text PDF

Rationale: Congenital ectropion uveae (CEU) is a rare, nonprogressive anomaly characterized by the proliferation of the iris pigment epithelium on the anterior surface of the iris, often associated with glaucoma. Due to its rarity and complexity, standardized glaucoma surgical management is limited. To our knowledge, the application of glaucoma drainage devices in CEU is rarely documented.

View Article and Find Full Text PDF

Intrinsic dual-emitting Si dots for high-precision and broad-range pH detection.

Anal Chim Acta

February 2025

Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China. Electronic address:

Background: High-precision and broad-range pH detection is critical for health status assessment, such as signal transduction, enzyme activity, endocytosis, and cell proliferation and apoptosis. Although pH-responsive ratiometric fluorescent probes offer an effective pH monitoring strategy, their preparation often requires multi-step modification and decreases fluorescence efficiency and stability. Herein, we developed a simple method to prepare fluorescent Si dots with dual emission centers for high-precision and broad-range pH monitoring, and the detection of urease based on pH-responsive Si dots and pH monitoring in living cell was further explored.

View Article and Find Full Text PDF

Background: The Linear Accelerator Shortage Index (LSI) is a practical tool for prioritising the deployment of linear accelerators (LINACs) in various regions within a country. The LSI reflects the ratio of LINAC demand to current availability. The aim of this study was to use the LSI to predict global LINAC needs and classify countries according to the degree of radiotherapy shortage (LINAC shortage grade).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!