Knowledge gaps regarding potential ontogeny and plant species identity effects on carbon isotope fractionation might lead to misinterpretations of carbon isotope composition (δ13C) of respired CO2, a widely-used integrator of environmental conditions. In monospecific mesocosms grown under controlled conditions, the δ13C of C pools and fluxes and leaf ecophysiological parameters of seven herbaceous species belonging to three functional groups (crops, forage grasses and legumes) were investigated at three ontogenetic stages of their vegetative cycle (young foliage, maximum growth rate, early senescence). Ontogeny-related changes in δ13C of leaf- and soil-respired CO2 and 13C/12C fractionation in respiration (ΔR) were species-dependent and up to 7‰, a magnitude similar to that commonly measured in response to environmental factors. At plant and soil levels, changes in δ13C of respired CO2 and ΔR with ontogeny were related to changes in plant physiological status, likely through ontogeny-driven changes in the C sink to source strength ratio in the aboveground plant compartment. Our data further showed that lower ΔR values (i.e. respired CO2 relatively less depleted in 13C) were observed with decreasing net assimilation. Our findings highlight the importance of accounting for ontogenetic stage and plant community composition in ecological studies using stable carbon isotopes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4807002PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0151583PLOS

Publication Analysis

Top Keywords

respired co2
12
soil-respired co2
8
herbaceous species
8
carbon isotope
8
δ13c respired
8
changes δ13c
8
δ13c
5
co2
5
plant
5
effects ontogeny
4

Similar Publications

Impacts of different intensities of commercial Sphagnum moss extraction on CO fluxes in a northern Patagonia peatland.

Sci Total Environ

January 2025

Department of Forest Sciences, Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Temuco, Chile.

Peatlands are key ecosystems for global climate regulation because they provide the most efficient carbon sink on the planet. Despite this, they have been widely degraded by various anthropogenic disturbances, causing imbalances in their ecological functioning. A more recent type of disturbance corresponds to the commercial extraction of Sphagnum mosses, which has been carried out in temperate peatlands distributed in Australasia and Patagonia.

View Article and Find Full Text PDF

Responses of soil respiration and its temperature sensitivity to nitrogen and phosphorus depositions in a riparian zone.

J Environ Manage

January 2025

Key Laboratory of Water Environment Evolution and Pollution Control in the Three Gorges Reservoir, Chongqing Three Georges University, Chongqing, 404100, PR China.

Nitrogen and phosphorus depositions and global warming have continuously intensified, impacting soil respiration. However, the response mechanisms of soil respiration rate (R) and its temperature sensitivity (Q) to nitrogen and phosphorus depositions are still unclear, especially for riparian zones. Intact Fluvisols were collected at different water-level elevations (150, 160, 170, and 180 m) of the riparian zone of the Three Gorges Reservoir, China and incubated under 20 and 30 °C with additions of nitrogen (36 kg N ha yr), phosphorus (0.

View Article and Find Full Text PDF

Microbial Carbon Use Efficiency and Growth Rates in Soil: Global Patterns and Drivers.

Glob Chang Biol

January 2025

Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Goettingen, Göttingen, Germany.

Carbon use efficiency (CUE) of microbial communities in soil quantifies the proportion of organic carbon (C) taken up by microorganisms that is allocated to growing microbial biomass as well as used for reparation of cell components. This C amount in microbial biomass is subsequently involved in microbial turnover, partly leading to microbial necromass formation, which can be further stabilized in soil. To unravel the underlying regulatory factors and spatial patterns of CUE on a large scale and across biomes (forests, grasslands, croplands), we evaluated 670 individual CUE data obtained by three commonly used approaches: (i) tracing of a substrate C by C (or C) incorporation into microbial biomass and respired CO (hereafter C-substrate), (ii) incorporation of O from water into DNA (O-water), and (iii) stoichiometric modelling based on the activities of enzymes responsible for C and nitrogen (N) cycles.

View Article and Find Full Text PDF

In the future, with elevated atmospheric CO (eCO), forests are expected to increase woody biomass to capture more carbon (C), though this is dependent on soil nutrient availability. While young forests may access unused nutrients by growing into an unexplored soil environment, it is unclear how or if mature forests can adapt belowground under eCO. Soil respiration ( ) and nutrient bioavailability are integrative ecosystem measures of below-ground dynamics.

View Article and Find Full Text PDF

Moderate grazing reduces while mowing increases greenhouse gas emissions from a steppe grassland: Key modulating function played by plant standing biomass.

J Environ Manage

January 2025

Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China; Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China. Electronic address:

Grassland represents one of the most expansive terrestrial ecosystems, exerting a profound influence on atmospheric greenhouse gas (GHG) levels within the broader context of global change. Both climate and land use changes play important roles in modulating grassland GHG emissions by directly or indirectly altering soil physical and chemical properties, especially soil temperature and inorganic nitrogen content. The optimal grassland management practices need to simultaneously meet the requirements of reducing GHG emissions, maintaining biological biodiversity, and ensuring productivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!